Skip to main content

Advertisement

Log in

Investigation of Physicochemical and Cytotoxic Potential of Ocimum basilicum Leaf Extract Mediated Magnetite Nanoparticles: In Vitro

  • Original Paper
  • Published:
Journal of Cluster Science Aims and scope Submit manuscript

Abstract

In this report, an environment friendly and cost effective green synthesis method of magnetite nanoparticles (Fe3O4 NPs) was introduced. Fe3O4 NPs were successfully synthesized by green route using Ocimum basilicum leaf extract. The structural investigation of Fe3O4 NPs using X-Ray diffraction technique revealed the cubic crystallinity with Fd3m space group, which was confirmed with an aid of Rietveld refinement. No secondary phases (such as Fe2O3 and FeO) were observed, which confirmed the high purity of synthesized Fe3O4 NPs. The characteristics peak at 3320 cm−1 displayed the phenolic constituents of Ocimum basilicum leaf extract and peak at 665 cm−1 illustrated the Fe–O bending, which confirmed the formation of Fe3O4 NPs. Ocimum basilicum leaf extract mediated Fe3O4 NPs possess spherical morphology with an average particle size ~ 15 nm as depicted by transmission electron microscopy (TEM). The magnetic potential of Ocimum basilicum leaf extract mediated Fe3O4 NPs was also carried out by using a vibration sample magnetometer (VSM), which revealed the superparamagnetic behavior of Fe3O4 NPs. Cytotoxicity of the as-synthesized Fe3O4 NPs nanoparticles was also examined on the human breast cancer cell line, which illustrated the efficacy of the synthesized nanoparticles with a low value of IC50 (~ 17.75 µg/ml). The results displayed the potent anticancerous effect of Ocimum basilicum leaf extract capped Fe3O4 NPs, which made these nanoparticles suitable for a drug-loaded vehicle for the drug delivery system for biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S. H. Sun, C. B. Murray, D. Weller, L. Folks, and A. Moser (2000). Science 287, 1989.

    CAS  PubMed  Google Scholar 

  2. B. Jeyadevan, C. N. Chinnasamy, K. Shinoda, K. Tohji, and H. Oka (2003). J. Appl. Phys. 93, 8450.

    CAS  Google Scholar 

  3. M. M. Miller, G. A. Prinz, S. F. Cheng, and S. Bounnak (2002). Appl. Phys. Lett. 81, 2211.

    CAS  Google Scholar 

  4. J. Zhang, Y. Wang, H. Ji, Y. Wei, N. Wu, B. Zuo, and Q. Wang (2005). J. Catal. 229, 114.

    CAS  Google Scholar 

  5. M. Mahdavi, M. B. Ahmad, M. J. Haron, Y. Gharayebi, K. Shameli, and B. Nadi (2013). J. Inorg. Organomet. Polym. Mater. 23, 599.

    CAS  Google Scholar 

  6. K. Revati and B. D. Pandey (2011). Bull. Mater. Sci. 34, 191.

    Google Scholar 

  7. J. Guo, R. Wang, W. W. Tjiu, J. Pan, and T. Liu (2012). J. Hazard. Mater. 225, 63.

    PubMed  Google Scholar 

  8. A. K. Gupta and M. Gupta (2005). Biomaterials 26, 3995.

    CAS  PubMed  Google Scholar 

  9. N. D. S. Zambri, N. I. Taib, F. A. Latif, and Z. Mohamed (2019). Molecules 24, 38031.

    Google Scholar 

  10. K. Abhilash and B. D. Revati (2011). Pandey. Bull. Mater. Sci. 34, 191.

    CAS  Google Scholar 

  11. L. Zhuang, W. Zhang, Y. Zhao, H. Shen, H. Lin, and J. Liang (2015). Sci. Rep. 5, 9320.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. W. Wannoussa, T. Masy, S. Lambert, B. Heinrichs, L. Tasseroul, A. E. Al-Ahmad, F. Weekers, P. Thonart, and S. Hiligsmann (2015). J. Water Res. Protect. 7, 264.

    CAS  Google Scholar 

  13. X. Liu, M. Peng, G. Li, Y. Miao, H. Luo, G. Jing, Y. He, C. Zhang, F. Zhang, and H. Fan (2019). Nano Lett. 19, 4118.

    CAS  PubMed  Google Scholar 

  14. J. Park, K. An, Y. Hwang, J. G. Park, H. J. Noh, J. Y. Kim, J. H. Park, N. M. Hwang, and T. Hyeon (2004). Nat. Mater. 3, 891.

    CAS  PubMed  Google Scholar 

  15. S. Sun and H. Zeng (2002). J. Am. Chem. Soc. 124, 8204.

    CAS  PubMed  Google Scholar 

  16. M. A. Malik, M. Y. Wani, and M. A. Hashim (2012). Arab. J. Chem. 5, 397.

    CAS  Google Scholar 

  17. B. Wang, Q. Wei, and S. Qu (2013). Int. J. Electrochem. Sci. 8, 3786.

    CAS  Google Scholar 

  18. S. F. Hasany, I. Ahmed, J. Rajan, and A. Rehman (2012). Nanosci. Nanotech. 2, 148.

    Google Scholar 

  19. M. Khatami, H. Q. Alijani, M. S. Nejad, and R. S. Varma (2018). Appl. Sci. 8, 411.

    Google Scholar 

  20. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen (2011). Adv. Drug. Deliv. Rev. 63, 24.

    CAS  PubMed  Google Scholar 

  21. S. Senapati, A. Ahmad, M. I. Khan, M. Sastry, and R. Kumar (2005). Small 1, 517.

    CAS  PubMed  Google Scholar 

  22. T. Klaus, R. Joerger, E. Olsson, and C. G. Granqvist (1999). Proc. Natl. Acad. Sci. 96, 13611.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. V. Bansal, D. Rautaray, A. Ahmad, and M. Sastry (2004). J. Mater. Chem. 14, 3303.

    CAS  Google Scholar 

  24. D. Hebbalalu, J. Lalley, M. N. Nadagouda, R. S. Varma, and A. C. S. Sustain (2013). Chem. Eng. 1, 703.

    CAS  Google Scholar 

  25. P. Mohanpuria, N. K. Rana, and S. K. Yadav (2008). J. Nanoparticle Res. 10, 507.

    CAS  Google Scholar 

  26. M. Herlekar, S. Barve, and R. Kumar (2014). J. Nanoparticles 2014, 1.

    Google Scholar 

  27. S. S. Shankar, A. Rai, A. Ahmad, and M. Sastry (2004). J. Colloid Interface Sci. 275, 496.

    CAS  PubMed  Google Scholar 

  28. M. G. Balamurughan, S. Mohanraj, S. Kodhaiyolii, and V. Pugalenthi (2014). J. Chem. Pharm. Sci. 4, 201.

    Google Scholar 

  29. M. J. Kadhim, A. A. Sosa, and I. H. Hameed (2016). J. Pharmacognosy Phytother. 8, 127.

    CAS  Google Scholar 

  30. V. Malapermal, I. Botha, S. B. N. Krishna, and J. N. Mbatha (2017). Saudi. J. Biol. Sci. 24, 1294.

    CAS  Google Scholar 

  31. R. Meera, P. Devi, B. Kameswari, B. Madhumitha, and N. J. Merlin (2009). Indian J. Exp. Biol. 47, 584.

    CAS  PubMed  Google Scholar 

  32. M. Altikatoglu, A. Attar, F. Erci, C. M. Cristache, and I. Isildak (2017). Fresenius Environ Bull 25 (12), 7832.

    Google Scholar 

  33. R. J. Carvajal, 'A Rietveld Refinement and Pattern Matching Analysis Program Laboratories Leon Brillouin', FullPROF, [CEA-CNRS] France 2000.

  34. A. C. B. Jesus, J. R. Jesus, R. J. S. Lima, K. O. Moura, J. M. A. Almeida, J. G. S. Duque, and C. T. Meneses (2020). Ceram. Int. 46, 11149.

    CAS  Google Scholar 

  35. D. A. Petrov, R. D. Ivantsov, S. M. Zharkov, D. A. Velikanov, M. S. Molokeev, C. R. Lin, C. T. Tso, H. S. Hsu, Y. T. Tseng, E. S. Lin, and I. S. Edelman (2020). J. Magn. Magn. Mater. 493, 165692.

    CAS  Google Scholar 

  36. R. Rahmani, M. Gharanfoli, M. Gholamin, M. Darroudi, J. Chamani, K. Sadri, and A. Hashemzadeh (2020). Ceram. Int. 46, 3051.

    CAS  Google Scholar 

  37. V. Tavallali, V. Rowshan, H. Gholami, and S. Hojati (2020). Sci. Hortic. 265, 109222.

    CAS  Google Scholar 

  38. K. Sharma, S. Guleria, and V. K. Razdan (2019). J Plant Biochem Biot. 29, 1.

    Google Scholar 

  39. G. Singhal, R. Bhavesh, K. Kasariya, A. R. Sharma, and R. P. Singh (2011). J Nanopart Res. 13, 2981.

    CAS  Google Scholar 

  40. L. G. Cerda and S. M. Montemayor (2005). J. Magn. Magn. 294, e43.

    Google Scholar 

  41. G. Vaidyanathan, S. Sendhilnathan, and R. Arulmurugan (2007). J. Magn. Magn. 313, 293.

    CAS  Google Scholar 

  42. Y. Ahn, E. J. Choi, and E. H. Kim (2003). Rev. Adv. Mater. Sci. 5, 477.

    Google Scholar 

  43. R. K. Sharma, Y. Monga, and A. Puri (2014). J Mol Catal A Chem. 393, 84.

    CAS  Google Scholar 

  44. E. C. Nnadozie and P. A. Ajibade (2020). Mater. Lett. 263, 127145.

    CAS  Google Scholar 

  45. A. Azizi J Inorg Organomet P. 69, 1 (2020).

  46. W. Lu, Y. Shen, A. Xie, and W. Zhang (2010). J. Magn. Magn. Mater. 322, 1828.

    CAS  Google Scholar 

  47. A. M. Alkilany and C. J. Murphy (2010). J. Nanopart. Res. 12, 2313.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. S. Vesaratchanon, A. Nikolov, and D. T. Wasan (2007). Adv. Colloid Interf. Sci. 134, 268–278.

    Google Scholar 

  49. K. C. Nam, K. H. Choi, K. D. Lee, J. H. Kim, J. S. Jung, and B. J. Park (2016). J. Nanomater. 2016, 1.

    Google Scholar 

Download references

Acknowledgement

The authors are grateful to Chitkara University, Punjab for support and institutional facilities. A special thanks to Sophisticated Analytical Instrumentation Facility, Panjab University, Chandigarh, India, for characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inderjeet Singh Sandhu.

Ethics declarations

Conflict of Interest

Authors hereby declare that we have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhillon, G., Kumar, N., Chitkara, M. et al. Investigation of Physicochemical and Cytotoxic Potential of Ocimum basilicum Leaf Extract Mediated Magnetite Nanoparticles: In Vitro. J Clust Sci 33, 73–80 (2022). https://doi.org/10.1007/s10876-020-01919-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10876-020-01919-z

Keywords

Navigation