Skip to main content

Advertisement

Log in

Hydrogenation of furfural to furfuryl alcohol over efficient sol-gel nickel-copper/zirconia catalyst

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

Furfuryl alcohol (FA), a valuable compound from furfural (FF) was synthesized by efficient Ni-Cu/ZrO2 catalysts. The catalysts with varying Ni and Cu loading were developed by sol-gel method and characterized by Brunauer-Emmet-Teller (BET) method, X-ray diffraction, Temperature Programmed Reduction (TPR), X-ray photoelectron spectroscopy techniques. Cu/ZrO2 and Ni/ZrO2 catalysts were also tested to compare the effect of the Ni-Cu/ZrO2 catalyst. Both Ni and Cu showed the synergistic effect on FA formation. The Ni-Cu/ZrO2 catalyst was used for hydrogenation of FF by changing pressure, catalyst loading, temperature and time. A 93% FA yield was achieved over the 7Ni-Cu/ZrO2 catalyst with 0.07 g Ni and 0.1 g Cu/1 g ZrO2 at 200 °C for 4 h under 1.5 MPa H2 pressure. The sol-gel Ni-Cu/ZrO2 catalyst without the use of expensive noble metals is effective on the hydrogenation of FF to FA relatively in mildly reaction pressure.

Graphic abstract

The Ni-Cu/ZrO2 catalyst was used for hydrogenation of FF by changing pressure, catalyst loading, temperature and time. A 93% FA yield was achieved over the 7Ni-Cu/ZrO2 catalyst with 0.07 g Ni and 0.1 g Cu/1 g ZrO2 at 200 °C for 4 h under 1.5 MPa H2 pressure. The sol-gel Ni-Cu/ZrO2 catalyst without the use of expensive noble metals is effective on the hydrogenation of FF to FA relatively in mildly reaction pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  1. Werpy T, Petersen G, Aden A, Bozell J J, Holladay J, White J, Manheim A, Elliot D, Lasure L, Jones S, Gerber M, Ibsen K, Lumberg L and Kelly S 2004 US Department of Energy, report NREL/TP-510-355532

  2. Mariscal R, Maireles-Torres P, Ojeda M, Sádaba I and Granados M L 2016 Furfural: a renewable and versatile platform molecule for the synthesis of chemicals and fuels Energy Environ. Sci. 9 1144

    Article  CAS  Google Scholar 

  3. Nagaraja B M, Padmasri A H, Raju B D and Rama R K S 2007 Vapor phase selective hydrogenation of furfural to furfuryl alcohol over Cu–MgO coprecipitated catalysts J. Mol. Catal. A: Chem. 265 90

    Article  CAS  Google Scholar 

  4. Yan K, Wu G, Lafleur T and Jarvis C 2014 Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals Renew. Sust. Energ. Rev. 38 663

    Article  CAS  Google Scholar 

  5. Panagiotopoulou P and Vlachos D G 2014 Liquid phase catalytic transfer hydrogenation of furfural over a Ru/C catalyst Appl. Catal. A-Gen. 480 17

    Article  CAS  Google Scholar 

  6. Liu L, Lou H and Chen M 2018 Selective hydrogenation of furfural over Pt based and Pd based bimetallic catalysts supported on modified multiwalled carbon nanotubes (MWNT) Appl. Catal. A-Gen. 550 1

    Article  CAS  Google Scholar 

  7. Li F, Cao B, Ma R, Liang J and Song H 2016 Performance of Cu/TiO2-SiO2 catalysts in hydrogenation of furfural to furfuryl alcohol Can. J. Chem. Eng. 94 1368

    CAS  Google Scholar 

  8. Chen H, Ruan H, Lu X, Fu J, Langrish T and Lu X 2018 Efficient catalytic transfer hydrogenation of furfural to furfuryl alcohol in near-critical isopropanol over Cu/MgO-Al2O3 catalyst Mol. Catal. 445 94

    CAS  Google Scholar 

  9. Algorabi S, Akmaz S and Koç S N 2020 The investigation of hydrogenation behavior of furfural over sol-gel prepared Cu/ZrO2 catalysts J. Sol-Gel Sci. Technol. 96 47

    Article  CAS  Google Scholar 

  10. Akmaz S, Algorabi S and Koç S N 2020 Furfural hydrogenation to 2-methylfuran over efficient sol-gel copper-cobalt/zirconia catalyst Can. J. Chem. Eng.

  11. Fulajtarova K, Sotak T, Hronec M, Vavra I and Dobrocka E 2015 Aqueous phase hydrogenation of furfural to furfuryl alcohol over Pd–Cu catalysts Appl. Catal. A-Gen. 502 78

    Article  CAS  Google Scholar 

  12. Srivastava S, Jadeja G C and Parikh J 2018 Copper-cobalt catalyzed liquid phase hydrogenation of furfural to 2-methylfuran: An optimization, kinetics and reaction mechanism study Chem. Eng. Res. Des. 132 313

    Article  CAS  Google Scholar 

  13. Fu Z, Wang Z, Lin W, Song W and Li S 2017 High efficient conversion of furfural to 2-methylfuran over Ni-Cu/Al2O3 catalyst with formic acid as a hydrogen donor Appl. Catal. A- Gen. 547 248

    Article  CAS  Google Scholar 

  14. Sulmonetti T P, Pang S H, Claure M T, Lee S., Cullen D A, Agrawal P K and Jones C W 2016 Vapor phase hydrogenation of furfural over nickel mixed metal oxide catalysts derived from layered double hydroxides Appl. Catal. A-Gen. 517 187

    Article  CAS  Google Scholar 

  15. Seemala B, Cai C M, Kumar R, Wyman C E and Christopher P 2018 Effects of Cu−Ni bimetallic catalyst composition and support on activity, selectivity, and stability for furfural conversion to 2 methyfuran ACS Sustain. Chem. Eng. 6 2152

    CAS  Google Scholar 

  16. Khromova S A, Bykova M V, Bulavchenko O A, Ermakov D Y, Saraev A A, Kaichev V V, Venderbosch R H and Yakovlev V A 2016 Furfural hydrogenation to furfuryl alcohol over bimetallic Ni–Cu sol–gel catalyst: A model reaction for conversion of oxygenates in pyrolysis liquids Top. Catal. 59 1413

    CAS  Google Scholar 

  17. Wu J, Gao G, Li J, Sun P, Long X and Li F 2017 Efficient and versatile CuNi alloy nanocatalysts for the highly selective hydrogenation of furfural Appl. Catal. B- Environ. 203 227

    Article  CAS  Google Scholar 

  18. Wang Y and Caruso R A 2002 Preparation and characterization of CuO–ZrO2 nanopowders, J. Mater. Chem. 12 1442

    Article  CAS  Google Scholar 

  19. XPS Interpretation of Nickel. https://xpssimplified.com/elements/nickel.php (accessed July 2020).

  20. Valente J S, Valle-Orta M, Armendáriz-Herrera H, Quintana-Solórzano R, Angel P, Ramírez-Salgado J and Montiel-López J R 2018 Controlling the redox properties of nickel in NiO/ZrO2 catalysts synthesized by sol–gel Catal. Sci. Technol. 8 4070

    CAS  Google Scholar 

  21. Heracleous E, Lee A F, Wilson K and Lemonidou A A 2005 Investigation of Ni-based alumina-supported catalysts for the oxidative dehydrogenation of ethane to ethylene: structural characterization and reactivity studies J. Catal. 231 159

    Article  CAS  Google Scholar 

  22. Solsona B, López Nieto J M, Concepción P, Dejoz F, Ivars A and Vázquez M I 2011 Oxidative dehydrogenation of ethane over Ni-W-O mixed metal oxide catalysts J. Catal. 280 28

    Article  CAS  Google Scholar 

  23. Carley A F, Jackson S D, Roberts M W and O’Shea J 2000 Alkali metal reactions with Ni(110)–O and NiO(100) surfaces Surf. Sci. 454 141

    Article  Google Scholar 

  24. Rao C N R, Vijayakrishnan V, Kulkarni G U and Rajumon M K 1995 A comparative study of the interaction of oxygen with clusters and single-crystal surfaces of nickel Appl. Surf. Sci. 84 285

    Article  CAS  Google Scholar 

  25. Watts J F and Wolstenholme J 2003 in An Introduction to Surface Analysis by XPS and AES (England: John Wiley)

  26. Peck M A and Langell M A 2012 Comparison of nanoscaled and Bulk NiO Structural and Environmental Characteristics by XRD, XAFS, and XPS Chem. Mater. 24 4483

    CAS  Google Scholar 

  27. Kim K S and Winograd N 1974 X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment Surf. Sci. 43 625

    Article  CAS  Google Scholar 

  28. Shen Y and Lua A C 2014 Sol–gel synthesis of Ni and Ni supported catalysts for hydrogen production by methane decomposition RSC Adv. 4 42159

  29. Bykova M V, Ermakov D Y, Kaichev V V, Bulavchenko O A, Saraev A A, Lebedev M Y and Yakovlev V A 2012 Ni-based sol–gel catalysts as promising systems for crude bio-oil upgrading:Guaiacol hydrodeoxygenation study Appl. Catal. B-Environ. 113–114 296

    Article  Google Scholar 

  30. Han S J, Song J H, Bang Y, Yoo J, Park S, Kang K H and Song I K 2016 Hydrogen production by steam reforming of ethanol over mesoporous Cu-Ni-Al2O3-ZrO2 xerogel catalysts Int. J. Hydrogen Energ. 41 2554

    Article  CAS  Google Scholar 

  31. Siddiqui N, Roy A S, Goyal R, Khatun R, Pendem C, Chokkapu A N, Bordoloi A and Bal R 2018 Hydrogenation of 5 hydroxymethylfurfural to 2,5 dimethylfuran over nickel supported tungsten oxide nanostructured catalyst Sustain. Energ. Fuels 2 191

    CAS  Google Scholar 

  32. Liu Z, Amiridis M D and Chen Y 2005 Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2 J. Phys. Chem. B 109 1251

    Article  CAS  Google Scholar 

  33. Wang L C, Liu Q, Chen M, Liu Y M, Cao Y, He H Y and Fan K N 2007 Structural evolution and catalytic properties of nanostructured Cu/ZrO2 catalysts prepared by oxalate gel-coprecipitation technique J. Phys. Chem. C 111 16549

    Article  CAS  Google Scholar 

  34. Ehsan M A, Hakeem A S, Khaledi H, Mazhar M, Shahid M M, Pandikumar A and Huang N M 2015 Fabrication of CuO–1.5ZrO2 composite thin film, from heteronuclear molecular complex and its electrocatalytic activity towards methanol oxidation RSC Adv. 5 103852

  35. Nguyen-Huy C, Lee H, Lee J, Kwak J H and An K 2019 An Mesoporous mixed CuCo oxides as robust catalysts for liquid-phase furfural hydrogenation Appl. Catal. A-Gen. 571 118

    Article  CAS  Google Scholar 

  36. Akgul F A, Akgul G, Yildirim N, Unalan H E and Turan R. 2014 Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films Mater. Chem. Phys. 147 987

    CAS  Google Scholar 

  37. Biesinger M C, Lau L W M, Gerson A R and Smart R St C 2010 Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn Appl. Surf. Sci. 257 887

    Article  CAS  Google Scholar 

  38. Kim J P, Pak E S, Hong T E, Bae J S, Ha M G, Jin J S, Jeong E D and Hong K S 2012 Electric properties and chemical bonding states of pn-junction p-CuO/n-Si by sol-gel method J. Ceram. Process Res. 13 96

    Google Scholar 

  39. Jiang P, Prendergast D, Borondics F, Porsgaard S and Giovanetti L 2013 Experimental and theoretical investigation of the electronic structure of Cu2O and CuO thin films on Cu(110) using x-ray photoelectron and absorption spectroscopy J. Chem. Phys. 138 024704-1-6

    Google Scholar 

  40. Ling P, Zhang Q, Cao T and Gao F 2018 Versatile three-dimensional porous Cu@Cu2O aerogel networks as electrocatalysts and mimicking peroxidases Angew. Chem. Int. Ed. 57 6819

    Article  CAS  Google Scholar 

  41. Liu J, Liao M, Imura M, Tanaka A, Iwai H and Koide Y 2014 Low on-resistance diamond field effect transistor with high-k ZrO2 as dielectric Sci. Rep. 4 6395

    CAS  Google Scholar 

  42. Liu L, Lou H and Chen M 2016 Selective hydrogenation of furfural to tetrahydrofurfuryl alcohol over Ni/CNTs and bimetallic Cu-Ni/CNTs catalysts Int. J. Hydrogen Energ. 41 14721

    Article  CAS  Google Scholar 

  43. Wang Y, Miao Y, Li S, Gao L and Xiao G 2017 Metal-organic frameworks derived bimetallic Cu-Co catalyst for efficient and selective hydrogenation of biomass-derived furfural to furfuryl alcohol Mol. Catal. 436 128

    CAS  Google Scholar 

  44. Zhang Z, Pei Z, Chen H, Chen K, Hou Z, Lu X, Ouyang P and Fu J 2018 Catalytic in-situ hydrogenation of furfural over bimetallic Cu−Ni alloy catalysts in isopropanol Ind. Eng. Chem. Res. 57 4225

    Article  CAS  Google Scholar 

  45. Srivastava S, Jadeja G C and Parikh J 2017 Synergism studies on alumina-supported copper-nickel catalysts towards furfural and 5-hydroxymethylfurfural hydrogenation J. Mol. Catal. A: Chem. 426 244

    Article  CAS  Google Scholar 

  46. Zhang J and Chen J 2017 Selective transfer hydrogenation of biomass-based furfural and 5-hydroxymethylfurfural over hydrotalcite-derived copper catalysts using methanol as a hydrogen donor ACS Sustain. Chem. Eng. 5 5982

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Scientific Research Projects Coordination Unit of Istanbul University-Cerrahpasa. Project Number: FYL-2020-34532.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solmaz Akmaz.

Ethics declarations

Conflict of interest

There is no conflict of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Şebin, M.E., Akmaz, S. & Koc, S.N. Hydrogenation of furfural to furfuryl alcohol over efficient sol-gel nickel-copper/zirconia catalyst. J Chem Sci 132, 157 (2020). https://doi.org/10.1007/s12039-020-01859-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01859-1

Keywords

Navigation