Skip to main content
Log in

Large Curvature Folding Strategies of Butterfly Proboscis

  • Published:
Journal of Bionic Engineering Aims and scope Submit manuscript

Abstract

Due to its real-time control, high folding ratio, and structure self-locking, flexible large curvature self-folding devices have broad application prospects, such as foldable human implants, flexible electronics, and flexible robots. Driven by this background, flexible large curvature folding butterfly (Polyura eudamippus) proboscises were studied in this work. The folding ratio of the proboscises was about 15. The curvature of coiled proboscises ranged from about 150 m−1 to 880 m−1. The external and internal structures of the proboscises were studied by different methods. Three main strategies for large-curvature folding of proboscises were identified: a gradual decrease in thickness, a lower elastic modulus, and (most importantly) large numbers of regular corrugated cracks arranged on the surface. These corrugated cracks can effectively accommodate the coiled strain and provide space for the large curvature folding of proboscises. Finally, a 4D printed coiled sample with corrugated cracks was fabricated to mimic the proboscises stretching process. Large-curvature folding strategies, based on these proboscises, provide insights for the biomimetic design of artificial highly folded components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Hernandez P, Hartl E A, Lagoudas D J, Dimitris C. Introduction to active origami structures. In: Hernandez P E A, Hartl D J and Lagoudas D C eds., Active Origami: Modeling, Design, and Applications, Springer International Publishing, Berlin, Germany, 2019, 1–53.

    Chapter  Google Scholar 

  2. Lebée A, Sab K. On the generalization of reissner plate theory to laminated plates, Part I: Theory. Journal of Elasticity, 2016, 126, 1–28.

    MATH  Google Scholar 

  3. Felton S, Tolley M, Demaine E, Rus D, Wood R. A method for building self-folding machines. Science, 2014, 345, 644–646.

    Article  Google Scholar 

  4. Amani S, Faraji G. Processing and properties of biodegradable magnesium microtubes for using as vascular stents: A Brief Review. Metals and Materials International, 2019, 25, 1341–1359.

    Article  Google Scholar 

  5. You Z. Folding structures out of flat materials. Science, 2014, 345, 623–624.

    Article  Google Scholar 

  6. Chen Y, Peng R, You Z. Origami of thick panels. Science, 2015, 349, 396–400.

    Article  Google Scholar 

  7. Tachi T. Generalization of rigid-foldable quadrilateral-mesh origami. Journal of the International Association for Shell and Spatial Structures, 2009, 50, 173–179.

    Google Scholar 

  8. Brunck V, Lechenault F, Reid A, Adda-Bedia M. Elastic theory of origami-based metamaterials. Physical Review E, 2016, 93, 033005.

    Article  Google Scholar 

  9. Eidini M, Paulino G H. Unravelling metamaterial properties in zigzag-base folded sheets. Science Advances, 2015, 1, e1500224.

    Article  Google Scholar 

  10. Reis P M, Francisco L J, Marthelot J G A. Transforming architectures inspired by origami. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12234–12235.

    Article  Google Scholar 

  11. Faber J A, Arrieta A F, Studart A R. Bioinspired spring origami. Science, 2018, 359, 1386–1391.

    Article  Google Scholar 

  12. Amjadi M, Sitti M. Self — Sensing paper actuators based on graphite — carbon nanotube hybrid films. Advanced Science, 2018, 5, 1800239.

    Article  Google Scholar 

  13. Tabassian R, Nguyen V H, Umrao S, Mahato M, Kim J, Porfiri M, Il-Kwon Oh. Graphene mesh for self-sensing ionic soft actuator inspired from mechanoreceptors in human body. Advanced Science, 2019, 6, 1901711.

    Article  Google Scholar 

  14. Shin S R, Migliori B, Miccoli B, Li Y C, Mostafalu P, Seo J, Mandla S, Enrico A, Antona S, Sabarish R, Zheng T, Pirrami L, Zhang K Z, Zhang Y S, Wan K, Demarchi D, Dokmeci M R, Khademhosseini A. Electrically driven microengineered bioinspired soft robots. Advanced Materials, 2018, 30, 1704189.

    Google Scholar 

  15. Truby R L, Wehner M, Grosskopf A K, Vogt D M, Uzel S G M, Wood R J, Lewis J A. Soft somatosensitive actuators via embedded 3D printing. Advanced Materials, 2018, 30, 1706383.

    Article  Google Scholar 

  16. Gladman A S, Matsumoto E A, Nuzzo R G, Mahadevan L, Lewis J. Biomimetic 4D printing. Nature Materials, 2016, 15, 413–118.

    Article  Google Scholar 

  17. Wehner M, Truby R L, Fitzgerald D J, Mosadegh B, Whitesides G M, Lewis J A, Wood R J. An integrated design and fabrication strategy for entirely soft, autonomous robots. Nature, 2016, 536, 451–455.

    Article  Google Scholar 

  18. Grigoryan B, Paulsen S J, Corbett D C, Sazer D W, Fortin C L, Zaita A J, Greenfield P T, Calafat N J, Gounley J P, Ta A H, Johansson F, Randles A, Rosenkrantz J E, Louis-Rosenberg J D, Galie P A, Stevens K R, Miller J S. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science, 2019, 364, 458–464.

    Article  Google Scholar 

  19. Qin S, Yin H, Yang C, Dou Y F, Liu Z M, Zhang P, Yu H, Huang Y L, Feng J, Hao J F, Hao J, Deng L Z, Yan X Y, Dong X L, Zhao Z X, Jiang T J, Wang H W, Luo S J, Xie C. A magnetic protein biocompass. Nature Materials, 2016, 15, 217–226.

    Article  Google Scholar 

  20. Matloff L Y, Chang E, Feo T J, Jeffries L, Stowers A K, Thomson C, Lentink D. How flight feathers stick together to form a continuous morphing wing. Science, 2020, 367, 293–297.

    Article  Google Scholar 

  21. Chang E, Matloff L Y, Stowers A K, Lentink D. Soft biohybrid morphing wings with feathers underactuated by wrist and finger motion. Science Robotics, 2020, 5, eaay1246.

    Article  Google Scholar 

  22. Tsai C, Mikes P, Andrukh T, White E, Monaenkova D, Burtovyy O, Burtovvy R, Rubin B, Lukas D, Luzinov L, Owens J R, Kornev K G. Nanoporous artificial proboscis for probing minute amount of liquids. Nanoscale, 2011, 3, 4685–4695.

    Article  Google Scholar 

  23. Lehnert M S, Monaenkova D, Andrukh T, Beard C E, Adlerl P H, Kornev K G. Hydrophobic-hydrophilic dichotomy of the butterfly proboscis. Journal of the Royal Society Interface, 2013, 10, 20130336.

    Article  Google Scholar 

  24. Lehnert M S, Mulvane C P, Brothers A. Mouthpart separation does not impede butterfly feeding. Arthropod Structure & Development, 2014, 43, 97–102.

    Article  Google Scholar 

  25. Lee S C, Kim J H, Lee S J. Adhesion and suction functions of the tip region of a nectar-drinking butterfly proboscis, Journal of Bionic Engineering, 2017, 14, 600–606.

    Article  Google Scholar 

  26. Sol J A H P, Peeketi A R, Vyas N, Schenning A P H J, Annabattula R K, Debije M G. Butterfly proboscis-inspired tight rolling tapered soft actuators. Chemical Communications, 2019, 55, 1726–1729.

    Article  Google Scholar 

  27. Han Z W, Niu S C, Shang C H, Liu Z N, Ren L Q. Light trapping structures in wing scales of butterfly Trogonoptera brookiana. Nanoscale, 2012, 4, 2879–2883.

    Article  Google Scholar 

  28. Han Z W, Niu S C, Yang M, Zhang J Q, Yin W, Ren L Q. An ingenious replica templated from the light trapping structure in butterfly wing scales. Nanoscale, 2013, 5, 8500–8506.

    Article  Google Scholar 

  29. Lu T, Pan H, Ma J, Li Y, Zhu S M, Zhang D. Near-infrared trigged stimulus-responsive photonic crystals with hierarchical structures. ACS Applied Materials & Interfaces, 2017, 9, 34279–34285.

    Article  Google Scholar 

  30. Mazo-Vargas A, Concha C, Livraghi L, Massardo D, Wallback R, Zhang L, Papador J D, Martinez-Najera D, Jiggins C D, Kronforst M R, Breuker C J, Reed R D, Patel N H, McMillan W O, Martin A. Macroevolutionary shifts of WntA function potentiate butterfly wing-pattern diversity. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 10701–10706.

    Article  Google Scholar 

  31. Wang K J, Zhang J Q, Song H L, Fang Y Q, Wang X L, Chen D B, Liu L P, Niu S C, Yao Z W, Han Z W, Ren L Q. Efficient mechanoelectrical energy conversion based on the near-tip stress field of an antifracture slit observed in scorpions. Advanced Functional Materials, 2019, 29, 1807693.

    Article  Google Scholar 

  32. Andersen S O, Weisfogh T. Resilin. A rubberlike protein in Arthropod cuticle. Advances in Insect Physiology, 1964, 2, 1–65.

    Article  Google Scholar 

  33. Rajabi H, Ghoroubi N, Stamm K, Appel E, Gorb S N. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation. Acta Biomaterialia, 2017, 60, 330–338.

    Article  Google Scholar 

  34. Eugene K, Lee Y L. Implantable applications of chitin and chitosan. Biomaterials, 2003, 24, 2339–2349.

    Article  Google Scholar 

  35. Chaudhari S S, Arakane Y, Specht C A, Moussian B, Boyle D L, Park Y, Kramer K J, Beeman R, Muthukrishnan S. Knickkopf protein protects and organizes chitin in the newly synthesized insect exoskeleton. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 17028–17033.

    Article  Google Scholar 

  36. Mukherjee K, Vilcinskas A. The entomopathogenic fungus Metarhizium robertsii communicates with the insect host Galleria mellonella during infection. Virulence, 2018, 9, 402–413.

    Article  Google Scholar 

  37. Han Z W, Chen D B, Zhang K, Song H L, Wang K J, Niu S C, Zhang J Q, Ren L Q. Fine structure of scorpion pectines for odor capture. Journal of Bionic Engineering, 2017, 14, 589–599.

    Article  Google Scholar 

  38. Olsson S B, Hansson B S. Electroantennogram and single sensillum recording in insect antennae. Methods in Molecular Biology, 2013, 1068, 157–177.

    Article  Google Scholar 

  39. Song H L, Zhang J Q, Chen D B, Wang K J, Niu S C, Han Z W, Ren L Q. Superfast and high-sensitivity printable strain sensors with bioinspired micron-scale cracks. Nanoscale, 2017, 9, 1166–1173.

    Article  Google Scholar 

Download references

Acknowledgment

This work was funded by the project of National Key R&D Program of China (No. 2018YFA0703300), the Program for HUST Academic Frontier Youth Team of “4D Printing Technology” (No. 2018QYTD04), Science and Technology Project of Wuhan (No. 2018010401011281), Natural Science Foundation of Hubei Province (No. 2018CFB502), State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (No. P2019-006), China Postdoctoral Science Foundation (No. 2019M650648), Beijing Natural Science Foundation (No. 3204043) and Opening Project of the Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University (No. K201901, No. K201903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shifeng Wen or Yan Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, D., Song, H., Liu, Q. et al. Large Curvature Folding Strategies of Butterfly Proboscis. J Bionic Eng 17, 1239–1250 (2020). https://doi.org/10.1007/s42235-020-0089-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42235-020-0089-1

Keywords

Navigation