Skip to main content

Advertisement

Log in

How can biochar-based metal oxide nanocomposites counter salt toxicity in plants?

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Application of biochar-based metal oxide nanocomposites can acquire new composites and combine the benefits of biochar with nanomaterials. For the first time, this research was conducted to evaluate the possible effects of solid biochar (25 g biochar kg−1 soil) and biochar-based nanocomposites (BNCs) of magnesium oxide (25 g BNC-MgO kg−1 soil), manganese oxide (25 g BNC-MnO biochar kg−1 soil) and combined use of these nanocomposites (12.5 g BNC-MgO + 12.5 g BNC-MnO kg−1 soil) on salt (non-saline, 6 and 12 dSm−1 NaCl salinities) tolerance of safflower plants (Carthamus tinctorius L.). Salinity reduced potassium, magnesium and manganese contents in root and leaf tissues, chlorophyll content index, photosynthetic pigments, maximum quantum yield of photosystem II (Fv/Fm) and relative photosynthetic electron transport rate (RETR), leaf water content and plant biomass, but increased the sodium content, reactive oxygen species generation (ROS), oxidative stress and antioxidants and ROS detoxification potential of safflower roots and leaves. Application of biochar and BNCs increased the contents of potassium, manganese and magnesium in plant tissues, photosynthetic pigments, Fv/Fm and RETR, leaf water content and reduced sodium accumulation, ROS generation and oxidative stress under saline conditions, leading to a higher plant biomass in comparison with control. The BNC-MgO + BNC-MnO was the superior treatment on reducing salt toxicity. This treatment reduced oxidative stress by enhancing photosynthetic pigments, Fv/Fm and RETR of safflower under salt stress. These results revealed that BNCs have a great potential for improving salt tolerance of plants through increasing RETR and decreasing sodium accumulation and ROS generation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols, 2, 875–877.

    CAS  Google Scholar 

  • Ali, S., Rizwan, M., Qayyum, M. F., Ok, Y. S., Ibrahim, M., Riaz, M., et al. (2017). Biochar soil amendment on alleviation of drought and salt stress in plants: A critical review. Environmental Science and Pollution Research, 24, 12700–12712.

    CAS  Google Scholar 

  • Amini, S., Ghadiri, H., Chen, C., & Marschner, P. (2016). Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. Journal of Soils and Sediments, 16, 939–953.

    CAS  Google Scholar 

  • Bacchiocca, M., Biagiotti, E., & Ninfali, P. (2006). Nutritional and technological reasons for evaluating the antioxidant capacity of vegetable products. Italian Journal of Food Science, 18, 209–217.

    CAS  Google Scholar 

  • Bose, J., Rodrigo-Moreno, A., & Shabala, S. (2014). ROS homeostasis in halophytes in the context of salinity stress tolerance. Journal of Experimental Botany, 65, 1241–1257.

    CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  Google Scholar 

  • Chen, Z. C., Yamaji, N., Horie, T., Che, J., Li, J., An, G., & Ma, J. F. (2017). A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiology, 174, 1837–1849.

    CAS  Google Scholar 

  • Cheng, S. J., Tang, D. Q., Miller, W. B., & Shi, Y. M. (2018). Evaluation of salinity tolerance in honeysuckle (Lonicera japonica) using growth, ion accumulation, lipid peroxidation, and non-enzymatic and enzymatic antioxidants system criteria. Journal of Horticultural Science and Biotechnology, 93, 185–195.

    CAS  Google Scholar 

  • Dhindsa, R. S., Plumb-Dhindsa, P., & Thorpe, T. A. (1981). Leaf senescence: correlated with increased levels of membrane permeability and lipid peroxidation, and decreased levels of superoxide dismutase and catalase. Journal of Experimental Botany, 32, 93–101.

    CAS  Google Scholar 

  • Fageria, N. K. (2016). The use of nutrients in crop plants. Boca Raton: CRC Press.

    Google Scholar 

  • Farhangi-Abriz, S., & Ghassemi-Golezani, K. (2018). How can salicylic acid and jasmonic acid mitigate salt toxicity in soybean plants? Ecotoxicology and Environmental Safety, 147, 1010–1016.

    CAS  Google Scholar 

  • Farhangi-Abriz, S., Tavasolee, A., Ghassemi-Golezani, K., Torabian, S., Monirifar, H., & Rahmani, H. A. (2020). Growth-promoting bacteria and natural regulators mitigate salt toxicity and improve rapeseed plant performance. Protoplasma, 257, 1035–1047.

    CAS  Google Scholar 

  • Ghassemi-Golezani, K., & Farhangi-Abriz, S. (2018). Foliar sprays of salicylic acid and jasmonic acid stimulate H+-ATPase activity of tonoplast, nutrient uptake and salt tolerance of soybean. Ecotoxicology and Environmental Safety, 166, 18–25.

    CAS  Google Scholar 

  • Ghassemi-Golezani, K., & Farhangi-Abriz, S. (2019). Biochar alleviates fluoride toxicity and oxidative stress in safflower (Carthamus tinctorius L.) seedlings. Chemosphere, 223, 406–415.

    CAS  Google Scholar 

  • Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B. A., & Ben-Hayyim, G. (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta, 203, 460–469.

    CAS  Google Scholar 

  • Hatano, T., Kagawa, H., Yasuhara, T., & Okuda, T. (1988). Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chemical and Pharmaceutical Bulletin, 36, 2090–2097.

    CAS  Google Scholar 

  • Hemeda, H. M., & Klein, B. P. (1990). Effects of naturally occurring antioxidants on peroxidase activity of vegetable extracts. Journal of Food Science, 55, 184–185.

    CAS  Google Scholar 

  • Hendershot, W. H., Lalande, H., & Duquette, M. (1993). Ion exchange and exchangeable cations. Soil sampling and methods of analysis., 19, 167–176.

    Google Scholar 

  • Hsu, Y. T., & Kao, C. H. (2007). Toxicity in leaves of rice exposed to cadmium is due to hydrogen peroxide accumulation. Plant and Soil, 298, 231–241.

    CAS  Google Scholar 

  • Jones, J. B., Jr., & Case, V. W. (1990). Sampling, handling, and analyzing plant tissue samples. Soil Testing and Plant Analysis., 3, 389–427.

    Google Scholar 

  • Keller, T., & Schwager, H. (1977). Air pollution and ascorbic acid. European Journal of Plant Pathology, 7, 338–350.

    CAS  Google Scholar 

  • Lateef, A., Nazir, R., Jamil, N., Alam, S., Shah, R., Khan, M. N., & Saleem, M. (2019). Synthesis and characterization of environmental friendly corncob biochar based nano-composite–A potential slow release nano-fertilizer for sustainable agriculture. Environmental Nanotechnology, Monitoring and Management, 11, 100212.

    Google Scholar 

  • Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 495, 286–291.

    CAS  Google Scholar 

  • Liu, W. J., Jiang, H., & Yu, H. Q. (2015). Development of biochar-based functional materials: toward a sustainable platform carbon material. Chemical Reviews, 115, 12251–12285.

    CAS  Google Scholar 

  • Maclachlan, S., & Zalik, S. (1963). Plastid structure, chlorophyll concentration, and free amino acid composition of a chlorophyll mutant of barley. Canadian Journal of Botany, 41, 1053–1062.

    CAS  Google Scholar 

  • Mancinelli, A. L. (1984). Photoregulation of anthocyanin synthesis: VIII Effect of light pretreatments. Plant Physiology, 75, 447–453.

    CAS  Google Scholar 

  • Naeem, M. A., Khalid, M., Arshad, M., & Ahmad, R. (2014). Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pakistan Journal of Agricultural Sciences, 51, 75–82.

    Google Scholar 

  • Noctor, G., Reichheld, J. P., & Foyer, C. H. (2018). ROS-related redox regulation and signaling in plants. Seminars in Cell and Developmental Biology, 80, 3–12.

    CAS  Google Scholar 

  • Novak, J. M., Busscher, W. J., Laird, D. L., Ahmedna, M., Watts, D. W., & Niandou, M. A. (2009). Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Science, 174, 105–112.

    CAS  Google Scholar 

  • Pandya, D. H., Mer, R. K., Prajith, P. K., & Pandey, A. N. (2005). Effect of salt stress and manganese supply on growth of barley seedlings. Journal of Plant Nutrition, 27, 1361–1379.

    Google Scholar 

  • Rady, M. M., Talaat, N. B., Abdelhamid, M. T., Shawky, B. T., & Desoky, E. S. M. (2019). Maize (Zea mays L.) grains extract mitigates the deleterious effects of salt stress on common bean (Phaseolus vulgaris L.) growth and physiology. Journal of Horticultural Science and Biotechnology, 94, 777–789.

    CAS  Google Scholar 

  • Rajput, V. D., Gorovtsov, A. V., Fedorenko, G. M., Minkina, T. M., Fedorenko, A. G., Lysenko, V. S., et al. (2020). The influence of application of biochar and metal-tolerant bacteria in polluted soil on morpho-physiological and anatomical parameters of spring barley. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-019-00505-1.

    Article  Google Scholar 

  • Rehman, M., Liu, L., Bashir, S., Saleem, M. H., Chen, C., Peng, D., & Siddique, K. H. (2019). Influence of rice straw biochar on growth, antioxidant capacity and copper uptake in ramie (Boehmeria nivea L.) grown as forage in aged copper-contaminated soil. Plant Physiology and Biochemistry, 138, 121–129.

    CAS  Google Scholar 

  • Reynolds, W. D., Topp, G. C., Carter, M. R., & Gregorich, E. G. (2008). Soil water analyses: Principles and parameters Soil sampling and methods of analysis (2nd ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Rostamian, R., Heidarpour, M., Mousavi, S. F., & Afyuni, M. (2015). Characterization and sodium sorption capacity of biochar and activated carbon prepared from rice husk. Journal of Agricultural Science and Technology, 17, 1057–1069.

    Google Scholar 

  • Sakuraba, Y., Yokono, M., Akimoto, S., Tanaka, R., & Tanaka, A. (2010). Deregulated chlorophyll b synthesis reduces the energy transfer rate between photosynthetic pigments and induces photodamage in Arabidopsis thaliana. Plant and Cell Physiology, 51, 1055–1065.

    CAS  Google Scholar 

  • Servin, A. D., De la Torre-Roche, R., Castillo-Michel, H., Pagano, L., Hawthorne, J., Musante, C., et al. (2017). Exposure of agricultural crops to nanoparticle CeO2 in biochar-amended soil. Plant Physiology and Biochemistry, 110, 147–157.

    CAS  Google Scholar 

  • Shen, Z., Zhang, J., Hou, D., Tsang, D. C., Ok, Y. S., & Alessi, D. S. (2019). Synthesis of MgO-coated corncob biochar and its application in lead stabilization in a soil washing residue. Environment International, 122, 357–362.

    CAS  Google Scholar 

  • Song, Z., Lian, F., Yu, Z., Zhu, L., Xing, B., & Qiu, W. (2014). Synthesis and characterization of a novel MnOx-loaded biochar and its adsorption properties for Cu2+ in aqueous solution. Chemical Engineering Journal, 242, 36–42.

    CAS  Google Scholar 

  • Souid, A., Bellani, L., Magné, C., Zorrig, W., Smaoui, A., Abdelly, C., et al. (2018). Physiological and antioxidant responses of the sabkha biotope halophyte Limonium delicatulum to seasonal changes in environmental conditions. Plant Physiology and Biochemistry, 123, 180–191.

    CAS  Google Scholar 

  • Tan, X. F., Liu, Y. G., Gu, Y. L., Xu, Y., Zeng, G. M., Hu, X. J., et al. (2016). Biochar-based nano-composites for the decontamination of wastewater: A review. Bioresource Technology, 212, 318–333.

    CAS  Google Scholar 

  • Wang, S. Y., & Jiao, H. (2000). Scavenging capacity of berry crops on superoxide radicals, hydrogen peroxide, hydroxyl radicals, and singlet oxygen. Journal of Agricultural and Food Chemistry, 48, 5677–5684.

    CAS  Google Scholar 

  • Wen, P., Wu, Z., Han, Y., Cravotto, G., Wang, J., & Ye, B. C. (2017). Microwave-assisted synthesis of a novel biochar-based slow-release nitrogen fertilizer with enhanced water-retention capacity. ACS Sustain. Chemical Engineering, 5, 7374–7382.

    CAS  Google Scholar 

  • White, A. J. (2010). Development of an activated carbon from anaerobic digestion by-product to remove hydrogen sulfide from biogas. Toronto: University of Toronto.

    Google Scholar 

  • Yao, Y., Gao, B., Chen, J., Zhang, M., Inyang, M., Li, Y., et al. (2013). Engineered carbon (biochar) prepared by direct pyrolysis of Mg-accumulated tomato tissues: Characterization and phosphate removal potential. Bioresource Technology, 138, 8–13.

    CAS  Google Scholar 

  • Zama, E. F., Reid, B. J., Sun, G. X., Yuan, H. Y., Li, X. M., & Zhu, Y. G. (2018). Silicon (Si) biochar for the mitigation of arsenic (As) bioaccumulation in spinach (Spinacia oleracean) and improvement in the plant growth. Journal of Cleaner Production, 189, 386–395.

    CAS  Google Scholar 

  • Zhang, H., Voroney, R. P., Price, G. W., & White, A. J. (2017). Sulfur-enriched biochar as a potential soil amendment and fertiliser. Soil Research, 55, 93–99.

    CAS  Google Scholar 

  • Zhang, M., Shan, S., Chen, Y., Wang, F., Yang, D., Ren, J., et al. (2019). Biochar reduces cadmium accumulation in rice grains in a tungsten mining area-field experiment: Effects of biochar type and dosage, rice variety, and pollution level. Environmental Geochemistry and Health, 41, 43–52.

    CAS  Google Scholar 

  • Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chemistry, 64, 555–559.

    CAS  Google Scholar 

Download references

Acknowledgements

We appreciate the financial support of this work by the University of Tabriz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazem Ghassemi-Golezani.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1489 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghassemi-Golezani, K., Farhangi-Abriz, S. & Abdoli, S. How can biochar-based metal oxide nanocomposites counter salt toxicity in plants?. Environ Geochem Health 43, 2007–2023 (2021). https://doi.org/10.1007/s10653-020-00780-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00780-3

Keywords

Navigation