Skip to main content
Log in

One-Pot Synthesis of Fe-N-Containing Carbon Aerogel for Oxygen Reduction Reaction

  • Original Research
  • Published:
Electrocatalysis Aims and scope Submit manuscript

Abstract

Three-dimensional Fe-N-C aerogel catalysts for the oxygen reduction reaction (ORR) are prepared with resorcinol–formaldehyde–melamine and iron precursor using one-pot sol-gel process followed by supercritical drying and heat treatment in nitrogen (N2) and then ammonia (NH3) atmospheres. We studied the effect of the synthesis conditions (Fe precursor and Fe content) of organic aerogel and the heat treatment parameters (including temperature and duration) under N2/NH3 atmosphere on the structural properties and ORR catalytic activities of the resulting Fe-N-C aerogel catalysts. The Fe-N-C aerogel catalysts were characterized by X-ray diffraction, scanning electron microscopy, X-ray photoelectron spectroscopy, and N2-adsorption/desorption, and the ORR activities were studied by the rotating disk electrode method. It was found that the pore structure, the chemical composition, and ultimately the ORR performance were largely affected by the nature of iron precursor, iron content, and the conditions of heat treatment. The catalysts using Iron (III) acetylacetonate as Fe precursor incorporated with 3 wt% of Fe followed by the HT at 800 °C for 1 h under N2 and then 950 °C under NH3 for 30 min showed the highest content of active site (Fe-Nx) and largest mesopore volume, resulting in an enhanced catalytic activity and mass-transport property.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Shao, Q. Chang, J.P. Dodelet, R. Chenitz, Recent advances in electrocatalysts for oxygen reduction reaction. Chem. Rev. 116(6), 3594–3657 (2016)

    PubMed  CAS  Google Scholar 

  2. L. Zhang, D.P. Wilkinson, Y. Liu, J. Zhang, Progress in nanostructured (Fe or Co)/N/C non-noble metal electrocatalysts for fuel cell oxygen reduction reaction. Electrochim. Acta 262, 326–336 (2018)

    CAS  Google Scholar 

  3. H. Shen, T. Thomas, S.A. Rasaki, A. Saad, C. Hu, J. Wang, M. Yang, Oxygen reduction reactions of Fe-N-C catalysts: current status and the way forward. Electrochem. Energy Rev. 2(2), 252–276 (2019)

    CAS  Google Scholar 

  4. F. Jaouen, E. Proietti, M. Lefèvre, R. Chenitz, J.P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, P. Zelenay, Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4(1), 114–130 (2011)

    CAS  Google Scholar 

  5. S. Ruggeri, J.P. Dodelet, Influence of structural properties of pristine carbon blacks on activity of Fe/N/C cathode catalysts for PEFCs. J. Electrochem. Soc. 154(8), B761–B769 (2007)

    CAS  Google Scholar 

  6. F. Charreteur, S. Ruggeri, F. Jaouen, J.P. Dodelet, Increasing the activity of Fe/N/C catalysts in PEM fuel cell cathodes using carbon blacks with a high-disordered carbon content. Electrochim. Acta 53(23), 6881–6889 (2008)

    CAS  Google Scholar 

  7. C. Domínguez, F.J. Pérez-Alonso, M.A. Salam, S.A. Al-Thabaiti, M.A. Peña, F.J. García-García, L. Barrio, S. Rojas, Repercussion of the carbon matrix for the activity and stability of Fe/N/C electrocatalysts for the oxygen reduction reaction. Appl. Catal. B Environ. 183, 185–196 (2016)

    Google Scholar 

  8. C. Domínguez, F.J. Pérez-Alonso, J.L. Gómez De La Fuente, S.A. Al-Thabaiti, S.N. Basahel, A.O. Alyoubi, A.A. Alshehri, M.A. Peña, S. Rojas, Influence of the electrolyte for the oxygen reduction reaction with Fe/N/C and Fe/N/CNT electrocatalysts. J. Power Sources 271, 87–96 (2014)

    Google Scholar 

  9. J. Li, S. Ghoshal, W. Liang, M.T. Sougrati, F. Jaouen, B. Halevi, S. McKinney, G. McCool, C. Ma, X. Yuan, Z.F. Ma, S. Mukerjee, Q. Jia, Structural and mechanistic basis for the high activity of Fe-N-C catalysts toward oxygen reduction. Energy Environ. Sci. 9(7), 2418–2432 (2016)

    CAS  Google Scholar 

  10. A. Zitolo, V. Goellner, V. Armel, M.T. Sougrati, T. Mineva, L. Stievano, E. Fonda, F. Jaouen, Identification of catalytic sites for oxygen reduction in iron- and nitrogen-doped graphene materials. Nat. Mater. 14(9), 937–942 (2015)

    PubMed  CAS  Google Scholar 

  11. Q. Jia, N. Ramaswamy, U. Tylus, K. Strickland, J. Li, A. Serov, K. Artyushkova, P. Atanassov, J. Anibal, C. Gumeci, S.C. Barton, M.T. Sougrati, F. Jaouen, B. Halevi, S. Mukerjee, Spectroscopic insights into the nature of active sites in iron–nitrogen–carbon electrocatalysts for oxygen reduction in acid. Nano Energy 29, 65–82 (2016)

    CAS  Google Scholar 

  12. E. Proietti, F. Jaouen, M. Lefèvre, N. Larouche, J. Tian, J. Herranz, J.P. Dodelet, Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2(1), 416 (2011)

    PubMed  Google Scholar 

  13. B. Nagy, I. Bakos, I. Bertóti, A. Domán, A. Menyhárd, M. Mohai, K. László, Synergism of nitrogen and reduced graphene in the electrocatalytic behavior of resorcinol - formaldehyde based carbon aerogels. Carbon N. Y. 139, 872–879 (2018)

    CAS  Google Scholar 

  14. F. Li, L. Xie, G. Sun, Q. Kong, F. Su, Y. Cao, J. Wei, A. Ahmad, X. Guo, C.M. Chen, Resorcinol-formaldehyde based carbon aerogel: preparation, structure and applications in energy storage devices. Microporous Mesoporous Mater. 279, 293–315 (2019)

    CAS  Google Scholar 

  15. G. Rasines, P. Lavela, C. Macías, M.C. Zafra, J.L. Tirado, C.O. Ania, On the use of carbon black loaded nitrogen-doped carbon aerogel for the electrosorption of sodium chloride from saline water. Electrochim. Acta 170, 154–163 (2015)

    CAS  Google Scholar 

  16. G. Rasines, P. Lavela, C. Macías, M.C. Zafra, J.L. Tirado, J.B. Parra, C.O. Ania, N-doped monolithic carbon aerogel electrodes with optimized features for the electrosorption of ions. Carbon N. Y. 83, 262–274 (2015)

    CAS  Google Scholar 

  17. H.W. Liang, Z.Y. Wu, L.F. Chen, C. Li, S.H. Yu, Bacterial cellulose derived nitrogen-doped carbon nanofiber aerogel: an efficient metal-free oxygen reduction electrocatalyst for zinc-air battery. Nano Energy 11, 366–376 (2015)

    CAS  Google Scholar 

  18. A. Sarapuu, L. Samolberg, K. Kreek, M. Koel, L. Matisen, K. Tammeveski, Cobalt- and iron-containing nitrogen-doped carbon aerogels as non-precious metal catalysts for electrochemical reduction of oxygen. J. Electroanal. Chem. 746, 9–17 (2015)

    CAS  Google Scholar 

  19. A. Allahbakhsh, A.R. Bahramian, Self-assembled and pyrolyzed carbon aerogels: an overview of their preparation mechanisms, properties and applications. Nanoscale 7(34), 14139–14158 (2015)

    PubMed  CAS  Google Scholar 

  20. D. Long, J. Zhang, J. Yang, Z. Hu, G. Cheng, X. Liu, R. Zhang, L. Zhan, W. Qiao, L. Ling, Chemical state of nitrogen in carbon aerogels issued from phenol-melamine-formaldehyde gels. Carbon N. Y. 46(9), 1259–1262 (2008)

    CAS  Google Scholar 

  21. A. Sarapuu, K. Kreek, K. Kisand, M. Kook, M. Uibu, M. Koel, K. Tammeveski, Electrocatalysis of oxygen reduction by iron-containing nitrogen-doped carbon aerogels in alkaline solution. Electrochim. Acta 230, 81–88 (2017)

    CAS  Google Scholar 

  22. S. Liu, C. Deng, L. Yao, H. Zhong, H. Zhang, The key role of metal dopants in nitrogen-doped carbon xerogel for oxygen reduction reaction. J. Power Sources 269, 225–235 (2014)

    CAS  Google Scholar 

  23. K. Elumeeva, J. Ren, M. Antonietti, T.P. Fellinger, High surface iron/cobalt-containing nitrogen-doped carbon aerogels as non-precious advanced electrocatalysts for oxygen reduction. ChemElectroChem 2(4), 584–591 (2015)

    CAS  Google Scholar 

  24. A.A. Gewirth, J.A. Varnell, A.M. Diascro, Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems. Chem. Rev. 118(5), 2313–2339 (2018)

    PubMed  CAS  Google Scholar 

  25. H. Zhou, S. Xu, H. Su, M. Wang, W. Qiao, L. Ling, D. Long, Facile preparation and ultra-microporous structure of melamine-resorcinol- formaldehyde polymeric microspheres. Chem. Commun. 49(36), 3763–3765 (2013)

    CAS  Google Scholar 

  26. B. Nagy, S. Villar-Rodil, J.M.D. Tascón, I. Bakos, K. László, Nitrogen doped mesoporous carbon aerogels and implications for electrocatalytic oxygen reduction reactions. Microporous Mesoporous Mater. 230, 135–144 (2016)

    CAS  Google Scholar 

  27. J. Jagiello, J.P. Olivier, Carbon slit pore model incorporating surface energetical heterogeneity and geometrical corrugation. Adsorption 19(2–4), 777–783 (2013)

    CAS  Google Scholar 

  28. A.M. Puziy, O.I. Poddubnaya, B. Gawdzik, M. Sobiesiak, Comparison of heterogeneous pore models QSDFT and 2D-NLDFT and computer programs ASiQwin and SAIEUS for calculation of pore size distribution. Adsorption 22(4–6), 459–464 (2016)

    CAS  Google Scholar 

  29. P. Veselá, V. Slovák, Monitoring of N-doped organic xerogels pyrolysis by TG-MS. J. Therm. Anal. Calorim. 113(1), 209–217 (2013)

    Google Scholar 

  30. C. Macías, M. Haro, J.B. Parra, G. Rasines, C.O. Ania, Carbon black directed synthesis of ultrahigh mesoporous carbon aerogels. Carbon N. Y. 63, 487–497 (2013)

    Google Scholar 

  31. T.K. Sherwood, E.R. Gilliland, S.W. Ing, Hydrogen cyanide synthesis from its elements and from ammonia and carbon. Ind. Eng. Chem. 52(7), 601–604 (1960)

    CAS  Google Scholar 

  32. M. Lefèvre, J.P. Dodelet, Fe-based electrocatalysts made with microporous pristine carbon black supports for the reduction of oxygen in PEM fuel cells. Electrochim. Acta 53(28), 8269–8276 (2008)

    Google Scholar 

  33. F. Jaouen, F. Charreteur, J.P. Dodelet, Fe-based catalysts for oxygen reduction in PEMFCs. J. Electrochem. Soc. 153(4), A689–A698 (2006)

    CAS  Google Scholar 

  34. F. Charreteur, F. Jaouen, S. Ruggeri, J.P. Dodelet, Fe/N/C non-precious catalysts for PEM fuel cells: influence of the structural parameters of pristine commercial carbon blacks on their activity for oxygen reduction. Electrochim. Acta 53(6), 2925–2938 (2008)

    CAS  Google Scholar 

  35. D. Zhai, H. Du, B. Li, Y. Zhu, F. Kang, Porous graphitic carbons prepared by combining chemical activation with catalytic graphitization. Carbon N. Y. 49(2), 725–729 (2011)

    CAS  Google Scholar 

  36. A. Serov, A.D. Shum, X. Xiao, V. De Andrade, K. Artyushkova, I.V. Zenyuk, P. Atanassov, Nano-structured platinum group metal-free catalysts and their integration in fuel cell electrode architectures. Appl. Catal. B Environ. 237(August 2017), 1139–1147 (2018)

    CAS  Google Scholar 

  37. H.R. Byon, J. Suntivich, Y. Shao-Horn, Graphene-based non-noble-metal catalysts for oxygen reduction reaction in acid. Chem. Mater. 23(15), 3421–3428 (2011)

    CAS  Google Scholar 

  38. N. Brun, S.A. Wohlgemuth, P. Osiceanu, M.M. Titirici, Original design of nitrogen-doped carbon aerogels from sustainable precursors: application as metal-free oxygen reduction catalysts. Green Chem. 15(9), 2514–2524 (2013)

    CAS  Google Scholar 

  39. K. Artyushkova, A. Serov, S. Rojas-Carbonell, P. Atanassov, Chemistry of multitudinous active sites for oxygen reduction reaction in transition metal-nitrogen-carbon electrocatalysts. J. Phys. Chem. C 119(46), 25917–25928 (2015)

    CAS  Google Scholar 

  40. D. Guo, R. Shibuya, C. Akiba, S. Saji, T. Kondo, J. Nakamura, Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts. Electrochemistry 351(6271), 361–366 (2016)

    CAS  Google Scholar 

  41. W.J. Jiang, L. Gu, L. Li, Y. Zhang, X. Zhang, L.J. Zhang, J.Q. Wang, J.S. Hu, Z. Wei, L.J. Wan, Understanding the high activity of Fe-N-C electrocatalysts in oxygen reduction: Fe/Fe3C nanoparticles boost the activity of Fe-Nx. J. Am. Chem. Soc. 138(10), 3570–3578 (2016)

    PubMed  CAS  Google Scholar 

  42. P. Xu, W. Chen, Q. Wang, T. Zhu, M. Wu, J. Qiao, Z. Chen, J. Zhang, Effects of transition metal precursors (Co, Fe, Cu, Mn, or Ni) on pyrolyzed carbon supported metal-aminopyrine electrocatalysts for oxygen reduction reaction. RSC Adv. 5(8), 6195–6206 (2015)

    CAS  Google Scholar 

  43. X. Yang, Y. Wang, G. Zhang, L. Du, L. Yang, M. Markiewicz, J.Y. Choi, R. Chenitz, S. Sun, SiO2-Fe/N/C catalyst with enhanced mass transport in PEM fuel cells. Appl. Catal. B Environ. 264(June 2019), 118523 (2020)

    Google Scholar 

  44. F. Jaouen, J. Herranz, M. Lefévre, J.P. Dodelet, U.I. Kramm, I. Herrmann, P. Bogdanoff, J. Maruyama, T. Nagaoka, A. Garsuch, J.R. Dahn, T. Olson, S. Pylypenko, P. Atanassov, E.A. Ustinov, Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Interfaces 1(8), 1623–1639 (2009)

    PubMed  CAS  Google Scholar 

  45. Y. Hanzawa, H. Hatori, N. Yoshizawa, Y. Yamada, Structural changes in carbon aerogels with high temperature treatment. J. Carbon Res. Artic. 40(4), 575–581 (2002)

    CAS  Google Scholar 

  46. F. Charreteur, F. Jaouen, J.P. Dodelet, Iron porphyrin-based cathode catalysts for PEM fuel cells: influence of pyrolysis gas on activity and stability. Electrochim. Acta 54(26), 6622–6630 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Pierre Ilbizian for help with supercritical drying, Suzanne Jacomet for SEM analysis, Gabriel Monge for XRD, Frédéric Georgi for XPS (CEMEF- MINES ParisTech), and Sergio Rojas for TEM analysis (CSIC Madrid).

Funding

The authors received financial support from the European Union’s H2020-JTI-FCH-2017 Program (number 779550, project PEGASUS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandrine Berthon-Fabry.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1202 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Berthon-Fabry, S. One-Pot Synthesis of Fe-N-Containing Carbon Aerogel for Oxygen Reduction Reaction. Electrocatalysis 12, 78–90 (2021). https://doi.org/10.1007/s12678-020-00633-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12678-020-00633-8

Keywords

Navigation