Skip to main content

Advertisement

Log in

Targeting Caveolin-1 and Claudin-5 with AY9944, Improve Blood–Brain Barrier Permeability; Computational Simulation and Experimental Study

  • Original Research
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

The current study aimed to determine the protective effect of AY9944 related to Caveolin-1 and Claudin-5 role in lipid raft, which can rescue the blood–brain barrier from enhanced permeability. Therefore, in vivo analyses were performed following ischemia in normal, ischemic, and AY9944-treated animal groups. The results revealed that AY9944 reduced the infarct size, edema, and brain water content. The extravasation of Alb-Alexa 594 and biocytin-TMR was minimum in the AY9944-treated animals. The results showed a significant decrease in the expression level of Caveolin-1 over 8 h and 48 h and a remarkable increase in the level of Claudin-5 over 48 h following ischemia in AY9944-treated animals. Molecular docking simulation demonstrated that AY9944 exerts a possible protective role via attenuating the interaction of the Caveolin-1 and cholesterol in lipid raft. These findings point out that AY9944 plays a protective role in stroke by means of blood–brain barrier preservation.

Graphic Abstract

Proper neural function essentially needs a constant homeostatic brain environment which is provided by the blood-brain barrier. Rescuing blood-brain barrier from enhanced permeability via inducing the protective effect of AY9944 related to caveolin-1 and claudin-5 role in lipid raft was the aim of the current study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Research data are not shared.

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood–brain barrier. Neurobiol Dis 37(1):13–25

    CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harbor Perspect Biol 1(2):a002584

    Google Scholar 

  • Andreone BJ, Chow BW, Tata A, Lacoste B, Ben-Zvi A, Bullock K et al (2017) Blood-brain barrier permeability is regulated by lipid transport-dependent suppression of caveolae-mediated transcytosis. Neuron 94(3):581–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arbuzova A, Wang L, Wang J, Hangyás-Mihályné G, Murray D, Honig B, McLaughlin S (2000) Membrane binding of peptides containing both basic and aromatic residues. Experimental studies with peptides corresponding to the scaffolding region of caveolin and the effector region of MARCKS. Biochemistry 39(33):10330–10339

    CAS  PubMed  Google Scholar 

  • Beziaud T, Chen XR, El Shafey N, Frechou M, Teng F, Palmier B et al (2011) Simvastatin in traumatic brain injury: effect on brain edema mechanisms. Crit Care Med 39(10):2300–2307

    CAS  PubMed  Google Scholar 

  • Boyd NL, Park H, Yi H, Boo YC, Sorescu GP, Sykes M, Jo H (2003) Chronic shear induces caveolae formation and alters ERK and Akt responses in endothelial cells. Am J Physiol Heart Circ Physiol 285(3):H1113–H1122

    CAS  PubMed  Google Scholar 

  • Breen MR, Camps M, Carvalho-Simoes F, Zorzano A, Pilch PF (2012) Cholesterol depletion in adipocytes causes caveolae collapse concomitant with proteosomal degradation of cavin-2 in a switch-like fashion. PLoS ONE 7(4):e34516

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chang W-J, Rothberg KG, Kamen BA, Anderson R (1992) Lowering the cholesterol content of MA104 cells inhibits receptor-mediated transport of folate. J Cell Biol 118(1):63–69

    CAS  PubMed  Google Scholar 

  • Collins TR (2017) Neurologic diseases found to be the largest cause of disability worldwide. Neurol Today 17(22):1–32

    Google Scholar 

  • Coskun A, Serteser M, Unsal I (2013) Inhibition of cholesterol biosynthesis in hypercholesterolemia—is it the right choice?/Inhibicija Biosinteze Holesterola u Hiperholesterolemiji—Da Li Je Pravi Izbor? J Med Biochem 32(1):16–19

    CAS  Google Scholar 

  • Cummins TR, Longa E, Weinstein SP, Carlson CS (1988) Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20:84–91

    Google Scholar 

  • DeLano WL (2002) The PyMOL molecular graphics system. Delano Scientific, San Carlos

    Google Scholar 

  • D’Onofrio PM, Thayapararajah M, Lysko MD, Magharious M, Spratt SK, Lee G et al (2011) Gene therapy for traumatic central nervous system injury and stroke using an engineered zinc finger protein that upregulates VEGF-A. J Neurotrauma 28(9):1863–1879

    PubMed  Google Scholar 

  • Engel O, Kolodziej S, Dirnagl U, Prinz V (2011) Modeling stroke in mice-middle cerebral artery occlusion with the filament model. J Vis Exp JoVE 47:2423

    Google Scholar 

  • Fielding CJ, Bist A, Fielding PE (1997) Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc Natl Acad Sci 94(8):3753–3758

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343(6257):425

    CAS  PubMed  Google Scholar 

  • Harder T, Simons K (1997) Caveolae, DIGs, and the dynamics of sphingolipid—cholesterol microdomains. Curr Opin Cell Biol 9(4):534–542

    CAS  PubMed  Google Scholar 

  • Hoop CL, Sivanandam V, Kodali R, Srnec MN, van der Wel PC (2011) Structural characterization of the caveolin scaffolding domain in association with cholesterol-rich membranes. Biochemistry 51(1):90–99

    PubMed  Google Scholar 

  • Itallie CMV, Anderson JM (2012) Caveolin binds independently to claudin-2 and occludin. Ann N Y Acad Sci 1257(1):103–107

    PubMed  Google Scholar 

  • Kang E-J, Major S, Jorks D, Reiffurth C, Offenhauser N, Friedman A, Dreier J (2013) Blood–brain barrier opening to large molecules does not imply blood–brain barrier opening to small ions. Neurobiol Dis 52:204–218

    CAS  PubMed  Google Scholar 

  • Keep RF, Hua Y, Xi G (2012) Brain water content: a misunderstood measurement? Transl Stroke Res 3(2):263–265

    PubMed  PubMed Central  Google Scholar 

  • Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J et al (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82(3):603–617

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krieger E, Koraimann G, Vriend G (2002) Increasing the precision of comparative models with yasara nova—a self-parameterizing force field. Proteins Struct Funct Bioinform 47(3):393–402

    CAS  Google Scholar 

  • Kurzepa J, Szczepanska-Szerej A, Stryjecka-Zimmer M, Malecka-Massalska T, Stelmasiak Z (2006) Simvastatin could prevent increase of the serum MMP-9/TIMP-1 ratio in acute ischaemic stroke. Folia Biol Praha 52(6):181

    CAS  PubMed  Google Scholar 

  • Laskowski RA, MacArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26(2):283–291

    CAS  Google Scholar 

  • Li D-D, Song J-N, Huang H, Guo X-Y, An J-Y, Zhang M et al (2013) The roles of MMP-9/TIMP-1 in cerebral edema following experimental acute cerebral infarction in rats. Neurosci Lett 550:168–172

    CAS  PubMed  Google Scholar 

  • Liu J, Jin X, Liu KJ, Liu W (2012) Matrix metalloproteinase-2-mediated occludin degradation and caveolin-1-mediated claudin-5 redistribution contribute to blood–brain barrier damage in early ischemic stroke stage. J Neurosci 32(9):3044–3057

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maltese WA, Aprille J (1985) Relation of mevalonate synthesis to mitochondrial ubiquinone content and respiratory function in cultured neuroblastoma cells. J Biol Chem 260(21):11524–11529

    CAS  PubMed  Google Scholar 

  • Michinaga S, Koyama Y (2015) Pathogenesis of brain edema and investigation into anti-edema drugs. Int J Mol Sci 16(5):9949–9975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mortensen SA, Rosenfeldt F, Kumar A, Dolliner P, Filipiak KJ, Pella D et al (2014) The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a randomized double-blind trial. JACC Heart Failure 2(6):641–649

    PubMed  Google Scholar 

  • Nag S (2003) Morphology and molecular properties of cellular components of normal cerebral vessels. In: Nag S (ed) The blood-brain barrier. Springer, New York, pp 3–36

    Google Scholar 

  • Nag S, Venugopalan R, Stewart DJ (2007) Increased caveolin-1 expression precedes decreased expression of occludin and claudin-5 during blood–brain barrier breakdown. Acta Neuropathol 114(5):459–469

    CAS  PubMed  Google Scholar 

  • Nagai N, De Mol M, Van Hoef B, Verstreken M, Collen D (2001) Depletion of circulating α2-antiplasmin by intravenous plasmin or immunoneutralization reduces focal cerebral ischemic injury in the absence of arterial recanalization. Blood 97(10):3086–3092

    CAS  PubMed  Google Scholar 

  • Nategh M, Shaveisi K, Shabanzadeh AP, Sadr SS, Parviz M, Ghabaei M (2010) Systemic Hyperthermia Masks the Neuroprotective Effects of MK-801, but not Rosiglitazone in Brain Ischaemia. Basic Clin Pharmacol Toxicol 107(3):724–729

    CAS  PubMed  Google Scholar 

  • Nitta T, Hata M, Gotoh S, Seo Y, Sasaki H, Hashimoto N et al (2003) Size-selective loosening of the blood-brain barrier in claudin-5-deficient mice. J Cell Biol 161(3):653–660

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nusrat A, Parkos C, Verkade P, Foley C, Liang T, Innis-Whitehouse W et al (2000) Tight junctions are membrane microdomains. J Cell Sci 113(10):1771–1781

    CAS  PubMed  Google Scholar 

  • Ohkura Y, Akanuma S-I, Tachikawa M, Hosoya K-I (2010) Blood-to-retina transport of biotin via Na+-dependent multivitamin transporter (SMVT) at the inner blood-retinal barrier. Exp Eye Res 91(3):387–392

    CAS  PubMed  Google Scholar 

  • Owolabi MO, Arulogun O, Melikam S, Adeoye AM, Akarolo-Anthony S, Akinyemi R et al (2015) The burden of stroke in Africa: a glance at the present and a glimpse into the future. Cardiovasc J Afr 26(2):S27

    PubMed  PubMed Central  Google Scholar 

  • Panahpour H, Farhoudi M, Omidi Y, Mahmoudi J (2018) An in vivo assessment of blood-brain barrier disruption in a rat model of ischemic stroke. JoVE J Vis Exp 133:e57156

    Google Scholar 

  • Pol A, Martin S, Fernández MA, Ingelmo-Torres M, Ferguson C, Enrich C, Parton RG (2005) Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol Biol Cell 16(4):2091–2105

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponce J, de la Ossa NP, Hurtado O, Millan M, Arenillas JF, Dávalos A, Gasull T (2008) Simvastatin reduces the association of NMDA receptors to lipid rafts: a cholesterol-mediated effect in neuroprotection. Stroke 39(4):1269–1275

    CAS  PubMed  Google Scholar 

  • Racine RJ (1972) Modification of seizure activity by electrical stimulation: II. Motor seizure. Electroencephalogr Clin Neurophysiol 32(3):281–294

    CAS  PubMed  Google Scholar 

  • Rothberg KG, Ying Y-S, Kamen BA, Anderson R (1990) Cholesterol controls the clustering of the glycophospholipid-anchored membrane receptor for 5-methyltetrahydrofolate. J Cell Biol 111(6):2931–2938

    CAS  PubMed  Google Scholar 

  • Shuaib A, Wang CX, Yang T, Noor R (2002) Effects of nonpeptide V1 vasopressin receptor antagonist SR-49059 on infarction volume and recovery of function in a focal embolic stroke model. Stroke 33(12):3033–3037

    CAS  PubMed  Google Scholar 

  • Sinensky M, Beck L, Leonard S, Evans R (1990) Differential inhibitory effects of lovastatin on protein isoprenylation and sterol synthesis. J Biol Chem 265(32):19937–19941

    CAS  PubMed  Google Scholar 

  • Stamatovic SM, Johnson AM, Sladojevic N, Keep RF, Andjelkovic AV (2017) Endocytosis of tight junction proteins and the regulation of degradation and recycling. Ann N Y Acad Sci 1397(1):54–65

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tabouillot T, Muddana HS, Butler PJ (2011) Endothelial cell membrane sensitivity to shear stress is lipid domain dependent. Cell Mol Bioeng 4(2):169–181

    CAS  PubMed  Google Scholar 

  • Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watson PMD, Paterson JC, Thom G, Ginman U, Lundquist S, Webster CI (2013) Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier. BMC Neurosci 14(1):59

    PubMed  PubMed Central  Google Scholar 

  • Wiederstein M, Sippl MJ (2007) ProSA-web: interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Res 35(suppl 2):W407–W410

    PubMed  PubMed Central  Google Scholar 

  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12(1):7

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y (2008) I-TASSER server for protein 3D structure prediction. BMC Bioinformatics 9(1):40

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was a part of a Ph.D. thesis and supported by Basic Electrophysiology Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

Each author acknowledges he/she has participated in the analysis, drafting, and final approval of the manuscript in a substantive way and is prepared to take public responsibility for the work.

Corresponding author

Correspondence to Mohsen Parviz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholami, L., Jokar, S., Fatahi, Y. et al. Targeting Caveolin-1 and Claudin-5 with AY9944, Improve Blood–Brain Barrier Permeability; Computational Simulation and Experimental Study. Cell Mol Neurobiol 42, 1125–1139 (2022). https://doi.org/10.1007/s10571-020-01004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-020-01004-z

Keywords

Navigation