Skip to main content
Log in

Seismic microzonation of Sarpol-e-zahab after Mw 7.3 2017 Iran earthquake: 1D-equivalent linear approach

  • Original Article
  • Published:
Bulletin of Earthquake Engineering Aims and scope Submit manuscript

Abstract

The impacts of Iran’s recent and destructive earthquake of Mw 7.3 November 12 2017, and its important subsequent events are investigated at Sarpol-e-zahab by means of 1D-equivalent linear site response analyses. Local damages at Sarpol-e-zahab highlighted the role of seismic microzonation in seismic risk reduction and damage prevention plans for future events. Hence, the main goals of this study are set to provide maps for amplification factors and shaking levels of the city as well as validating design-basis earthquake loads for buildings and structures of the national code of IRSt2800. This is achieved by deconvolution of the strong motions recorded by ISMN-SPZ as the closest station to the epicenter of Mw 7.3 earthquake and finding the two horizontal bedrock motions and subsequently, convolution of the horizontal bedrock motions to find the ground motions at 38 points across the city. The results of seismic site response analyses have provided very instructive information for rehabilitation of the existing buildings and future constructions as well as seismic vulnerability assessment of buildings during earthquakes. Furthermore, it provides an unprecedented research in Iran of a complete seismic microzonation at urban scale after an earthquake and a successful application of seismic microzonation at urban area with inadequate number of strong motion recording stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Anthymidis M, Theodoulidis N, Savvaidis A, Papazachos C (2012) Constraining site response and shallow geophysical structure by ambient noise measurements and 1D numerical simulations: the case of Grevena town (N. Bull Earthq Eng, Greece). https://doi.org/10.1007/s10518-012-9378-3

    Book  Google Scholar 

  • Ashayeri I, Sadr A, Biglari M, Haghshenas E (2020) Comprehensive ambient noise analyses for seismic microzonation of sarpole-zahab after the Mw 7.3 2017 Iran earthquake. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105636

    Article  Google Scholar 

  • Bartlakowski J, Wenzel F, Radulian M, Ritter JRR, Wirth W (2006) Urban shakemap methodology for Bucharest. Geophys Res Lett. https://doi.org/10.1029/2006GL026283

    Article  Google Scholar 

  • Berberian M (1995) Master “blind” thrust faults hidden under the Zagros folds; active basement tectonics and surface morphotectonics. Tectonophysics 241:193–224

    Article  Google Scholar 

  • Biglari M, Formisano A (2020) Damage probability matrices and empirical fragility curves from damage data on masonry buildings after Sarpol-e-zahab and Bam Earthquakes of Iran. Front Built Environ 8:9. https://doi.org/10.3389/fbuil.2020.00002

    Article  Google Scholar 

  • Bommer JJ, Alarcon JE (2006) The prediction and use of peak ground velocity. J Earthq Eng 10(1):1–31

    Article  Google Scholar 

  • Bonnefoy-Claudet S, Cornou C, Bard PY, Cotton F, Moczo P, Kristek J, Fah D (2006) H/V ratio: a tool for site effects evaluation. Results from 1-D noise simulations. Geophys J Int 167:827–837

    Article  Google Scholar 

  • Caielli G, de Franco R, Di Fiore V, Albarello D, Catalano S, Pergalani F, Cavuoto G, Cercato M, Compagnoni M, Facciorusso J, Famiani D, Ferri F, Imposa S, Martini G, Paciello A, Paolucci E, Passeri F, Piscitelli S, Puzzilli LM, Vassallo M (2020) Extensive surface geophysical prospecting for seismic microzonation. Bull Earthq Eng. https://doi.org/10.1007/s10518-020-00866-4

    Article  Google Scholar 

  • Cultrera G, Ameri G, Sarao A, Cirella A, Emolo A (2013) Ground-motion simulations within ShakeMap methodology: application to the 2008 Iwate-Miyagi Nairiku (Japan) and 1980 Irpinia (Italy) earthquakes. Geophys J Int 193:220–237

    Article  Google Scholar 

  • Giallini S, Pizzi A, Pagliaroli A, Moscatelli M, Vignaroli G, Sirianni P, Mancini M, Laurenzano G (2020) Evaluation of complex site effects through experimental methods and numerical modelling: The case history of Arquata del Tronto, central Italy. Eng Geol. https://doi.org/10.1016/j.enggeo.2020.105646

    Article  Google Scholar 

  • Haghshenas E, Bard PY, Theodulidis N (2008) Empirical evaluation of microtremor H/V spectral ratio. Bull Earthq Eng 6:75–108

    Article  Google Scholar 

  • Hashash YMA, Musgrove MI, Harmon JA, Groholski DR, Phillips CA, Park D (2016) DEEPSOIL 6.1, User Manual

  • IRSt2800 (2014) Iranian code of practice for seismic resistant design of buildings, Standard No. 2800. Building and Housing Research Center, Tehran

  • Macerola L, Tallini M, Di Giulio G, Nocentini M, Milana G (2019) The 1-D and 2-D seismic modeling of deep quaternary basin (Downtown L’Aquila, Central Italy). Earthq Spec 35(4):1689–1710

    Article  Google Scholar 

  • Moczo P, Kristek J, Bard PY, Stripajova S, Hollender F, Chovanova Z, Kristekova M, Sicilia D (2018) Key structural parameters affecting earthquake ground motion in 2D and 3D sedimentary structures. Bull Earthq Eng. https://doi.org/10.1007/s10518-018-0345-5

    Article  Google Scholar 

  • Moosavi M, Ashayeri I, Haghshenas E, Biglari M, Kamalian M, Jalili J (2018) Preliminary seismic site classification map of Sarpol-e-zahab. J Seismol Earthq Eng 20:25–32

    Google Scholar 

  • Moscatelli M, Albarello D, Mugnozza GS, Dolce M (2020) The Italian approach to seismic microzonation. Bull Earthq Eng. https://doi.org/10.1007/s10518-020-00856-6

    Article  Google Scholar 

  • Nissen E, Ghods A, Karasözen E, Elliott JR, Barnhart WD, Bergman EA, Hayes GP, Jamal-Reyhani M, Nemati M, Tan F, Abdulnaby W, Benz HM, Shahvar MP, Talebian M, Chen L (2019) The 12 November 2017Mw 7.3 Ezgeleh-Sarpolzahab (Iran) earthquake and active tectonics of the Lurestan Arc. JGR Solid Earth. https://doi.org/10.1029/2018JB016221

    Article  Google Scholar 

  • Pagliaroli A (2018) Key issues in seismic microzonation studies: lessons from recent experiences in Italy. Rivista Italiana di Geotecnica Italian Geotech J 1(2018):5–48. https://doi.org/10.19199/2018.1.0557-1405.05

    Article  Google Scholar 

  • Pagliaroli A, Pergalani F, Ciancimino A, Chiaradonna A, Compagnoni M, de Silva F, Foti S, Giallini S, Lanzo G, Lombardi F, Luzi L, Macerola L, Nocentini M, Pizzi A, Tallini M, Teramo C (2019) Site response analyses for complex geological and morphological conditions: relevant case-histories from 3rd level seismic microzonation in Central Italy. Bull Earthq Eng. https://doi.org/10.1007/s10518-019-00610-7

    Article  Google Scholar 

  • Pergalani F, Pagliaroli A, Bourdeau C, Compagnoni M, Lenti L, Lualdi M, Madiai C, Martino S, Razzano R, Varone C, Verrubbi V (2019) Seismic microzoning map: approaches, results and applications after the 2016–2017 Central Italy seismic sequence. Bull Earthq Eng. https://doi.org/10.1007/s10518-019-00640-1

    Article  Google Scholar 

  • Poggi V, Fah D, Burjanek J, Giardini D (2012) The use of Rayleigh-wave ellipticity for site-specific hazard assessment and microzonation: application to the city of Lucerne, Switzerland. Geophys J Int 188:1154–1172

    Article  Google Scholar 

  • Priolo E, Pacor F, Spallarossa D, Milana G, Laurenzano G, Romano MA, Felicetta C, Hailemikael S, Cara F, Di Giulio G, Ferretti G, Barnaba C, Lanzano G, Luzi L, D’Amico M, Puglia R, Scafidi D, Barani S, De Ferrari R, Cultrera G (2019) Seismological analyses of the seismic microzonation of 138 municipalities damaged by the 2016–2017 seismic sequence in Central Italy. Bull Earthq Eng. https://doi.org/10.1007/s10518-019-00652-x

    Article  Google Scholar 

  • Seed H B, Idriss I M (1970) Soil moduli and damping factors for dynamic response analyses. Technical Report EERRC-70-10. University of California, Berkeley

  • Stanko D, Markušić S, Strelec S, Gazdek M (2017) HVSR analysis of seismic site effects and soil-structure resonance in Varaždin city (North Croatia). Soil Dyn Earthq Eng 92:666–677

    Article  Google Scholar 

  • Stanko D, Markušić S, Gazdek M, Sanković V, Slukan I, Ivančić I (2019) Assessment of the seismic site amplification in the City of Ivanec (NW Part of Croatia) using the microtremor HVSR method and equivalent-linear site response analysis. Geosciences. https://doi.org/10.3390/geosciences9070312

    Article  Google Scholar 

  • Tavani S, Parente M, Puzone F, Corradetti A, Gharabeigli G, Valinejad M, Morsalnejad D, Mazzoli S (2018) The seismogenic fault system of the 2017 Mw 7.3 Iran-Iraq earthquake: constraints from surface and subsurface data, cross-section balancing, and restoration. Solid Earth 9:821–831

    Article  Google Scholar 

  • Theodoulidis N, Cultrera G, Rubeis VD, Cara F, Panou A, Pagani M, Teves-Costa P (2008) Correlation between damage distribution and ambient noise H/V spectral ratio: the SESAME project results. Bull Earthq Eng 6:109–140

    Article  Google Scholar 

  • USGS (2003) U.S. Geological Survey Fact Sheet FS-087-03

  • Vajedian S, Motagh M, Mousavi Z, Motaghi K, Fielding EJ, Akbari B, Wetzel HU, Darabi A (2018) Coseismic deformation field of the Mw 7.3 12 November 2017 Sarpol-e Zahab (Iran) Earthquake: a decoupling horizon in the Northern Zagros Mountains inferred from InSAR observations. Remote Sens. https://doi.org/10.3390/rs10101589

    Article  Google Scholar 

  • Volpini C, Douglas J (2019) An accessible approach for the site response analysis of quasi-horizontal layered deposits. Bull Earthq Eng 17:1163–1183

    Article  Google Scholar 

  • Vucetic M, Dobry R (1991) Effect of soil plasticity on cyclic response. J Geotech Eng 117(1):87–107

    Article  Google Scholar 

  • Worden CB, Gerstenberger MC, Rhoades DA, Wald DJ (2012) Probabilistic relationships between ground-motion parameters and modified mercalli intensity in California. Bull Seismol Soc Am 102(1):204–221

    Article  Google Scholar 

  • Working Group ICMS (2008) Indirizzi e criteri per la microzonazione sismica-Guidelines for seismic microzonation. Conferenza delle Regioni e delle Province Autonome-Dipartimento della Protezione Civile

  • Zaineh HE, Yamanaka H, Dakkak R, Khalil A, Daoud M (2012) Estimation of shallow S-wave velocity structure in Damascus City, Syria, using microtremor exploration. Soil Dyn Earthq Eng 39:88–99

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Iman Ashayeri; Methodology: Iman Ashayeri; Formal analysis and investigation: Iman Ashayeri, Mohammad Amin Memari; Writing-original draft preparation: Iman Ashayeri; Writing-review and editing: Iman Ashayeri, Ebrahim Haghshenas; Resources: Iman Ashayeri; Supervision: Iman Ashayeri, Ebrahim Haghshenas

Corresponding author

Correspondence to Iman Ashayeri.

Ethics declarations

Conflicts of interest

The authors declared that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashayeri, I., Memari, M.A. & Haghshenas, E. Seismic microzonation of Sarpol-e-zahab after Mw 7.3 2017 Iran earthquake: 1D-equivalent linear approach. Bull Earthquake Eng 19, 605–622 (2021). https://doi.org/10.1007/s10518-020-00999-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10518-020-00999-6

Keywords

Navigation