Skip to main content
Log in

Non-LTE Effects in Rubidium Lines in Cool Stars

  • Published:
Astronomy Letters Aims and scope Submit manuscript

Abstract

The formation of the rubidium resonance lines is considered by taking into account the effects of departures from local thermodynamic equilibrium (LTE). A rubidium model atom has been constructed using 29 Rb I levels and the Rb II ground level. Non-LTE calculations have been performed for a grid of model atmospheres with \(T_{\textrm{eff}}\) from 3500 to 6500 K, \(\log g\) from 1.0 to 5.0, [Fe/H] from \({-}1.0\) to \({+}0.5\), \(V_{t}=1.0\) km s\({}^{-1}\), and a relative rubidium abundance \(\textrm{[Rb/Fe]}=0.0\). It is shown that disregarding the non-LTE effects can lead to significant errors in the abundance of this element. The non-LTE corrections for dwarf stars with effective temperatures below 4000 K depend critically on the inclusion of collisional interactions with hydrogen atoms. The differences in rubidium abundance when using quantum-mechanical calculations and Drawin’s theoretical approximation to take into account the collision rates of atoms with hydrogen atoms can reach 0.17 dex. The rubidium abundance has been determined from its lines in the solar spectrum, \(\textrm{(Rb/H)}=2.35\pm 0.05\), which virtually coincides with the rubidium abundance deduced from the analysis of meteorites, \(\textrm{(Rb/H)}=2.36\pm 0.03\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

REFERENCES

  1. C. W. Allen, Astrophysical Quantities (Athlone, London, 1973).

    Google Scholar 

  2. S. M. Andrievsky, M. Spite, S. A. Korotin, F. Spite, P. Bonifacio, R. Cayrel, P. François, and V. Hill, Astron. Astrophys. 509, A88 (2010).

    Article  ADS  Google Scholar 

  3. J. H. M. J. Bruls, R. J. Rutten, and N. G. Shchukina, Astron. Astrophys. 265, 237 (1992).

    ADS  Google Scholar 

  4. M. Carlsson, Uppsala Astron. Obs. Publ. 33 (1986).

  5. F. Castelli and R. L. Kurucz, in Modelling of Stellar Atmospheres, Proceedings of the 210th Symposium IAU, Uppsala, Sweden, June 17–21, 2002, Ed. by N. Piskunov, W. W. Weiss, and D. F. Gray, Proc. IAU Symp. 210, A20 (2003).

  6. J. J. Cowan, C. Sneden, J. E. Lawler, A. Aprahamian, M. Wiescher, K. Langanke, G. Martínez-Pinedo, and F. K. Thielemann, arXiv:1901.01410 (2019).

  7. S. Cristallo, L. Piersanti, O. Straniero, R. Gallino, I. Domínguez, C. Abia, G. Di Rico, M. Quintini, et al., Astrophys. J. Suppl. Ser. 197, 17 (2011).

    Article  ADS  Google Scholar 

  8. H. W. Drawin, Z. Phys. 225, 483 (1969).

    Article  ADS  Google Scholar 

  9. D. A. García-Hernández, P. García-Lario, B. Plez, F. D’Antona, A. Manchado, and J. M. Trigo-Rodríguez, Science (Washington, DC, U. S.) 314, 1751 (2006).

    Article  ADS  Google Scholar 

  10. D. von der Goltz, W. Hansen, and J. Richter, Phys. Scr. 30, 244 (1984).

    Article  ADS  Google Scholar 

  11. N. Grevesse, P. Scott, M. Asplund, and A. J. Sauval, Astron. Astrophys. 573, A27 (2015).

    Article  ADS  Google Scholar 

  12. D. Hofsaess, Z. Phys. A 281, 1 (1977).

    Article  ADS  Google Scholar 

  13. D. V. Ivanova and V. V. Shimanskii, Astron. Rep. 44, 376 (2000).

    Article  ADS  Google Scholar 

  14. A. I. Karakas and J. C. Lattanzio, Publ. Astron. Soc. Austral. 31, e030 (2014).

    Article  ADS  Google Scholar 

  15. S. A. Korotin, S. M. Andrievsky, and R. E. Luck, Astron. Astrophys. 351, 168 (1999).

    ADS  Google Scholar 

  16. M. Limongi and A. Chieffi, Astrophys. J. Suppl. Ser. 237, 13 (2018).

    Article  ADS  Google Scholar 

  17. K. Lodders, arXiv:1912.00844 (2019).

  18. G. V. Marr and D. M. Creek, Proc. R. Soc. London, Ser. A 304, 233 (1968).

    Article  ADS  Google Scholar 

  19. L. I. Mashonkina, V. V. Shimanskii, and N. A. Sakhibullin, Astron. Rep. 44, 790 (2000).

    Article  ADS  Google Scholar 

  20. Sz. Mészáros, C. Allende Prieto, B. Edvardsson, F. Castelli, A. E. Garcia Perez, B. Gustafsson, S. R. Majewski, B. Plez, et al., Astron. J. 144, 120 (2012).

    Article  ADS  Google Scholar 

  21. D. C. Morton, Astrophys. J. Suppl. Ser. 130, 403 (2000).

    Article  ADS  Google Scholar 

  22. C. Park, J. Quant. Spectrosc. Rad. Transfer 11, 7 (1971).

    Article  ADS  Google Scholar 

  23. N. Prantzos, C. Abia, M. Limongi, A. Chieffi, and S. Cristallo, Mon. Not. R. Astron. Soc. 476, 3432 (2018).

    Article  ADS  Google Scholar 

  24. N. Prantzos, C. Abia, S. Cristallo, M. Limongi, and A. Chieffi, Mon. Not. R. Astron. Soc. 491, 1832 (2020).

    ADS  Google Scholar 

  25. H. van Regemorter, Astrophys. J. 136, 906 (1962).

    Article  ADS  Google Scholar 

  26. T. Ryabchikova, N. Piskunov, R. L. Kurucz, H. C. Stempels, U. Heiter, Yu. Pakhomov, and P. S. Barklem, Phys. Scr. 90, 054005 (2015).

    Article  ADS  Google Scholar 

  27. J. E. Sansonetti, J. Phys. Chem. Ref. Data 35, 301 (2006).

    Article  ADS  Google Scholar 

  28. M. J. Seaton, Atomic and Molecular Processes, Ed. by D. R. Bates (Academic, New York, 1962).

    Google Scholar 

  29. J. Shejeelammal, A. Goswami, P. P. Goswami, R. S. Rathour, and T. Masseron, Mon. Not. R. Astron. Soc. 492, 3708 (2020).

    Article  ADS  Google Scholar 

  30. C. Sneden, J. J. Cowan, and R. Gallino, Ann. Rev. Astron. Astrophys. 46, 241 (2008).

    Article  ADS  Google Scholar 

  31. W. Steenbock and H. Holweger, Astron. Astrophys. 130, 319 (1984).

    ADS  Google Scholar 

  32. F. K. Thielemann, M. Eichler, I. V. Panov, and B. Wehmeyer, Ann. Rev. Nucl. Part. Sci. 67, 253 (2017).

    Article  ADS  Google Scholar 

  33. J. Tomkin and D. L. Lambert, Astrophys. J. 523, 234 (1999).

    Article  ADS  Google Scholar 

  34. C. Travaglio, D. Galli, R. Gallino, M. Busso, F. Ferrini, and O. Straniero, Astrophys. J. 521, 691 (1999).

    Article  ADS  Google Scholar 

  35. V. V. Tsymbal, ASP Conf. Ser. 108, 198 (1996).

  36. L. A. Vainshtein, I. I. Sobel’man, and E. A. Yukov, Excitation of Atoms and Broadening of Spectral Lines (Nauka, Moscow, 1979; Springer, Berlin, Heidelberg, 1995).

  37. L. Wallace, K. H. Hinkle, W. C. Livingston, and S. P. Davis, Astrophys. J. Suppl. Ser. 195, id:6 (2011).

  38. B. Warner, Mon. Not. R. Astron. Soc. 139, 115 (1968).

    Article  ADS  Google Scholar 

  39. W. L. Wiese and G. A. Martin, NSRDS-NBS 68, 1 (1980).

    ADS  Google Scholar 

  40. W. L. Wiese, M. W. Smith, and B. M. Miles, NSRDS-NBS 2, 1 (1969).

    ADS  Google Scholar 

  41. S. A. Yakovleva, P. S. Barklem, and A. K. Belyaev, Mon. Not. R. Astron. Soc. 473, 3810 (2018).

    Article  ADS  Google Scholar 

  42. H. W. Zhang, K. Butler, T. Gehren, J. R. Shi, and G. Zhao, Astron. Astrophys. 453, 723 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Korotin.

Additional information

Translated by V. Astakhov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Korotin, S.A. Non-LTE Effects in Rubidium Lines in Cool Stars. Astron. Lett. 46, 541–549 (2020). https://doi.org/10.1134/S1063773720080022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063773720080022

Keywords:

Navigation