Skip to main content
Log in

Hybridisable Discontinuous Galerkin Formulation of Compressible Flows

  • Original Paper
  • Published:
Archives of Computational Methods in Engineering Aims and scope Submit manuscript

Abstract

This work presents a review of high-order hybridisable discontinuous Galerkin (HDG) methods in the context of compressible flows. Moreover, an original unified framework for the derivation of Riemann solvers in hybridised formulations is proposed. This framework includes, for the first time in an HDG context, the HLL and HLLEM Riemann solvers as well as the traditional Lax–Friedrichs and Roe solvers. HLL-type Riemann solvers demonstrate their superiority with respect to Roe in supersonic cases due to their positivity preserving properties. In addition, HLLEM specifically outstands in the approximation of boundary layers because of its shear preservation, which confers it an increased accuracy with respect to HLL and Lax–Friedrichs. A comprehensive set of relevant numerical benchmarks of viscous and inviscid compressible flows is presented. The test cases are used to evaluate the competitiveness of the resulting high-order HDG scheme with the aforementioned Riemann solvers and equipped with a shock treatment technique based on artificial viscosity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33

Similar content being viewed by others

References

  1. Aliabadi SK, Ray SE, Tezduyar TE (1993) SUPG finite element computation of viscous compressible flows based on the conservation and entropy variables formulations. Comput Mech 11(5–6):300–312

    MATH  Google Scholar 

  2. Arnold DN, Brezzi F, Cockburn B, Marini LD (2002) Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J Numer Anal 39(5):1749–1779

    MathSciNet  MATH  Google Scholar 

  3. Balan A, Woopen M, May G (2015) Hp-adaptivity on anisotropic meshes for hybridized discontinuous Galerkin scheme. AIAA paper

  4. Bassi F, Rebay S (1995) Accurate 2D Euler computations by means of a high order discontinuous finite element method. In: Deshpande SM, Desai SS, Narasimha R (eds) Fourteenth international conference on numerical methods in fluid dynamics. Lecture notes in physics, vol 453, pp 234–240. Springer, Berlin

  5. Bassi F, Rebay S (1997) A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier–Stokes equations. J Comput Phys 131(2):267–279

    MathSciNet  MATH  Google Scholar 

  6. Bassi F, Rebay S (1997) High-order accurate discontinuous finite element solution of the 2D Euler equations. J Comput Phys 138(2):251–285

    MathSciNet  MATH  Google Scholar 

  7. Bassi F, Rebay S (2002) Numerical evaluation of two discontinuous Galerkin methods for the compressible Navier–Stokes equations. Int J Numer Methods Fluids 40(1–2):197–207

    MATH  Google Scholar 

  8. Blasius H (1908) Grenzschichten in fluessigkeiten mit kleiner reibung. Z Math Phys 56(1):1–37

    MATH  Google Scholar 

  9. Bui-Thanh T (2015) From Godunov to a unified hybridized discontinuous Galerkin framework for partial differential equations. J Comput Phys 295:114–146

    MathSciNet  MATH  Google Scholar 

  10. Cangiani A, Dong Z, Georgoulis EH, Houston P (2017) \(hp\)-version discontinuous Galerkin methods on polygonal and polyhedral meshes. Springer, Berlin

    MATH  Google Scholar 

  11. Carter JE (1972) Numerical solutions of the Navier–Stokes equations for the supersonic laminar flow over a two-dimensional compression corner. Tech. rep., NASA-TR-R-385

  12. Casoni E, Peraire J, Huerta A (2012) One-dimensional shock-capturing for high-order discontinuous Galerkin methods. Int J Numer Methods Fluids 71(6):737–755

    MathSciNet  MATH  Google Scholar 

  13. Chalot F, Normand PE (2010) Higher-order stabilized finite elements in an industrial Navier–Stokes code. In: Kroll N, Bieler H, Deconinck H, Couaillier V, van der Ven H, Sørensen K (eds) ADIGMA—a European initiative on the development of adaptive higher-order variational methods for aerospace applications, pp 145–165. Springer

  14. Chalot FL, Perrier P (2004) Industrial aerodynamics. Encyclopedia of computational mechanics

  15. Chassaing JC, Khelladi S, Nogueira X (2013) Accuracy assessment of a high-order moving least squares finite volume method for compressible flows. Comput Fluids 71:41–53

    MathSciNet  MATH  Google Scholar 

  16. Chiocchia G (1985) Exact solutions to transonic and supersonic flows. AGARD Technical Report AR–211

  17. Cockburn B (2001) Devising discontinuous Galerkin methods for non-linear hyperbolic conservation laws. J Comput Appl Math 128(1–2):187–204

    MathSciNet  MATH  Google Scholar 

  18. Cockburn B (2016) Static condensation, hybridization, and the devising of the HDG methods. In: Lecture notes in computational science and engineering, pp 129–177. Springer

  19. Cockburn B, Di Pietro DA, Ern A (2016) Bridging the hybrid high-order and hybridizable discontinuous Galerkin methods. ESAIM Math Model Numer Anal 50(3):635–650

    MathSciNet  MATH  Google Scholar 

  20. Cockburn B, Fu G (2016) Superconvergence by M-decompositions. Part II: construction of two-dimensional finite elements. ESAIM Math Model Numer Anal 51(1):165–186

    MathSciNet  MATH  Google Scholar 

  21. Cockburn B, Fu G (2016) Superconvergence by M-decompositions. Part III: construction of three-dimensional finite elements. ESAIM Math Model Numer Anal 51(1):365–398

    MathSciNet  MATH  Google Scholar 

  22. Cockburn B, Fu G (2017) Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity by M-decompositions. IMA J Numer Anal 38(2):566–604

    MathSciNet  MATH  Google Scholar 

  23. Cockburn B, Fu G, Qiu W (2016) A note on the devising of superconvergent HDG methods for Stokes flow by M-decompositions. IMA J Numer Anal 37:730–749

    MathSciNet  MATH  Google Scholar 

  24. Cockburn B, Fu G, Sayas FJ (2016) Superconvergence by M-decompositions. Part I: general theory for HDG methods for diffusion. Math Comput 86(306):1609–1641

    MathSciNet  MATH  Google Scholar 

  25. Cockburn B, Gopalakrishnan J (2004) A characterization of hybridized mixed methods for second order elliptic problems. SIAM J Numer Anal 42(1):283–301

    MathSciNet  MATH  Google Scholar 

  26. Cockburn B, Gopalakrishnan J (2005) Incompressible finite elements via hybridization. Part I: the Stokes system in two space dimensions. SIAM J Numer Anal 43(4):1627–1650

    MathSciNet  MATH  Google Scholar 

  27. Cockburn B, Gopalakrishnan J (2005) Incompressible finite elements via hybridization. Part II: the Stokes system in three space dimensions. SIAM J Numer Anal 43(4):1651–1672

    MathSciNet  MATH  Google Scholar 

  28. Cockburn B, Gopalakrishnan J (2009) The derivation of hybridizable discontinuous Galerkin methods for Stokes flow. SIAM J Numer Anal 47(2):1092–1125

    MathSciNet  MATH  Google Scholar 

  29. Cockburn B, Gopalakrishnan J, Lazarov R (2009) Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems. SIAM J Numer Anal 47(2):1319–1365

    MathSciNet  MATH  Google Scholar 

  30. Cockburn B, Karniadakis GE, Shu CW (2000) The development of discontinuous Galerkin methods. In: Discontinuous Galerkin methods, pp 3–50. Springer, Berlin

  31. Cockburn B, Lin SY, Shu CW (1989) TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J Comput Phys 84(1):90–113

    MathSciNet  MATH  Google Scholar 

  32. Cockburn B, Shi K (2012) Superconvergent HDG methods for linear elasticity with weakly symmetric stresses. IMA J Numer Anal 33(3):747–770

    MathSciNet  MATH  Google Scholar 

  33. Cockburn B, Shu CW (1998) The local discontinuous Galerkin method for time-dependent convection-diffusion systems. SIAM J Numer Anal 35(6):2440–2463

    MathSciNet  MATH  Google Scholar 

  34. Cockburn B, Shu CW (1998) The Runge–Kutta discontinuous Galerkin method for conservation laws V. J Comput Phys 141(2):199–224

    MathSciNet  MATH  Google Scholar 

  35. Cook AW, Cabot WH (2005) Hyperviscosity for shock–turbulence interactions. J Comput Phys 203(2):379–385

    MATH  Google Scholar 

  36. Degrez G, Boccadoro CH, Wendt JF (1987) The interaction of an oblique shock wave with a laminar boundary layer revisited. An experimental and numerical study. J Fluid Mech 177:247–263

    Google Scholar 

  37. Di Pietro D, Ern A (2015) A hybrid high-order locking-free method for linear elasticity on general meshes. Comput Methods Appl Mech Eng 283:1–21

    MathSciNet  MATH  Google Scholar 

  38. Di Pietro DA, Ern A, Lemaire S (2014) An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators. Comput Methods Appl Math 14(4):461–472

    MathSciNet  MATH  Google Scholar 

  39. Donea J, Huerta A (2003) Finite element methods for flow problems. Wiley, Hoboken

    Google Scholar 

  40. Drikakis D (2003) Advances in turbulent flow computations using high-resolution methods. Prog Aerosp Sci 39(6–7):405–424

    Google Scholar 

  41. Dumbser M, Balsara DS (2016) A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems. J Comput Phys 304:275–319

    MathSciNet  MATH  Google Scholar 

  42. Dumbser M, Käser M, Titarev VA, Toro EF (2007) Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems. J Comput Phys 226(1):204–243

    MathSciNet  MATH  Google Scholar 

  43. Egger H, Schöberl J (2009) A hybrid mixed discontinuous Galerkin finite-element method for convection-diffusion problems. IMA J Numer Anal 30(4):1206–1234

    MathSciNet  MATH  Google Scholar 

  44. Egger H, Waluga C (2012) \(hp\)-analysis of a hybrid DG method for Stokes flow. IMA J Numer Anal 33(2):687–721

    MathSciNet  MATH  Google Scholar 

  45. Egger H, Waluga C (2012) A hybrid mortar method for incompressible flow. Int J Numer Anal Model 9(4):793–812

    MathSciNet  MATH  Google Scholar 

  46. Einfeldt B (1988) On Godunov-type methods for gas dynamics. SIAM J Numer Anal 25(2):294–318

    MathSciNet  MATH  Google Scholar 

  47. Einfeldt B, Munz C, Roe P, Sjögreen B (1991) On Godunov-type methods near low densities. J Comput Phys 92(2):273–295

    MathSciNet  MATH  Google Scholar 

  48. Ekaterinaris JA (2005) High-order accurate, low numerical diffusion methods for aerodynamics. Prog Aerosp Sci 41(3–4):192–300

    Google Scholar 

  49. Ekelschot D, Moxey D, Sherwin S, Peiró J (2017) A p-adaptation method for compressible flow problems using a goal-based error indicator. Comput Struct 181:55–69

    Google Scholar 

  50. Ern A, Di Pietro DA (2011) Mathematical aspects of discontinuous Galerkin methods. Springer, Berlin

    MATH  Google Scholar 

  51. Fernández P, Nguyen C, Peraire J (2018) A physics-based shock capturing method for unsteady laminar and turbulent flows. AIAA paper

  52. Fernández P, Nguyen NC, Peraire J (2017) The hybridized discontinuous Galerkin method for implicit large-Eddy simulation of transitional turbulent flows. J Comput Phys 336:308–329

    MathSciNet  MATH  Google Scholar 

  53. Fish J, Belytschko T (2007) A first course in finite elements. Wiley, Hoboken

    MATH  Google Scholar 

  54. Fleischmann N, Adami S, Hu XY, Adams NA (2019) A low dissipation method to cure the grid-aligned shock instability. J Comput Phys 401:109004

    MathSciNet  Google Scholar 

  55. Gerhold T (2005) Overview of the hybrid RANS code TAU. In: MEGAFLOW-numerical flow simulation for aircraft design, pp 81–92. Springer

  56. Giacomini M, Karkoulias A, Sevilla R, Huerta A (2018) A superconvergent HDG method for Stokes flow with strongly enforced symmetry of the stress tensor. J Sci Comput 77(3):1679–1702

    MathSciNet  MATH  Google Scholar 

  57. Giacomini M, Sevilla R (2019) Discontinuous Galerkin approximations in computational mechanics: hybridization, exact geometry and degree adaptivity. SN Appl Sci 1:1047

    Google Scholar 

  58. Giacomini M, Sevilla R, Huerta A (2020) Tutorial on hybridizable discontinuous Galerkin (HDG) formulation for incompressible flow problems. Springer, Cham, pp 163–201

    Google Scholar 

  59. Giorgiani G, Fernández-Méndez S, Huerta A (2014) Hybridizable discontinuous Galerkin with degree adaptivity for the incompressible Navier–Stokes equations. Comput Fluids 98:196–208

    MathSciNet  MATH  Google Scholar 

  60. Godunov SK, Bohachevsky I (1959) Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics. Mat Sb 47(3):271–306

    MathSciNet  Google Scholar 

  61. Guyan RJ (1965) Reduction of stiffness and mass matrices. AIAA Paper 3(2):380–380

    Google Scholar 

  62. Hakkinen RJ, Greber I, Trilling L, Abarbanel SS (1959) The interaction of an oblique shock wave with a laminar boundary layer. Tech. rep., NASA Memo 2-18-59W

  63. Harten A, Hyman JM (1983) Self adjusting grid methods for one-dimensional hyperbolic conservation laws. J Comput Phys 50(2):235–269

    MathSciNet  MATH  Google Scholar 

  64. Harten A, Lax PD, van Leer B (1983) On upstream differencing and Godunov-type schemes for hyperbolic conservation laws. SIAM Rev 25(1):35–61

    MathSciNet  MATH  Google Scholar 

  65. Hartmann R, Houston P (2003) Adaptive discontinuous Galerkin finite element methods for nonlinear hyperbolic conservation laws. SIAM J Sci Comput 24(3):979–1004

    MathSciNet  MATH  Google Scholar 

  66. Hesthaven JS (2017) Numerical methods for conservation laws. Society for Industrial and Applied Mathematics

  67. Huerta A, Angeloski A, Roca X, Peraire J (2013) Efficiency of high-order elements for continuous and discontinuous Galerkin methods. Int J Numer Methods Eng 96(9):529–560

    MathSciNet  MATH  Google Scholar 

  68. Huerta A, Casoni E, Peraire J (2011) A simple shock-capturing technique for high-order discontinuous Galerkin methods. Int J Numer Methods Fluids 69(10):1614–1632

    MathSciNet  MATH  Google Scholar 

  69. Hung C, MacCormack R (1976) Numerical solutions of supersonic and hypersonic laminar compression corner flows. AIAA J 14(4):475–481

    MATH  Google Scholar 

  70. Jasak H (2009) OpenFOAM: open source CFD in research and industry. Int J Nav Archit Ocean Eng 1(2):89–94

    Google Scholar 

  71. Jaust A, Schuetz J, Woopen M (2014) A hybridized discontinuous Galerkin method for unsteady flows with shock-capturing. In: 44th AIAA fluid dynamics conference. American Institute of Aeronautics and Astronautics

  72. Jaust A, Schütz J (2014) A temporally adaptive hybridized discontinuous Galerkin method for time-dependent compressible flows. Comput Fluids 98:177–185

    MathSciNet  MATH  Google Scholar 

  73. Jaust A, Schütz J, Woopen M (2015) An HDG method for unsteady compressible flows. In: Lecture notes in computational science and engineering, pp 267–274. Springer

  74. Katzer E (1989) On the lengthscales of laminar shock/boundary-layer interaction. J Fluid Mech 206:477–496

    Google Scholar 

  75. Kawai S, Lele S (2008) Localized artificial diffusivity scheme for discontinuity capturing on curvilinear meshes. J Comput Phys 227(22):9498–9526

    MathSciNet  MATH  Google Scholar 

  76. Kawai S, Shankar SK, Lele SK (2010) Assessment of localized artificial diffusivity scheme for large-eddy simulation of compressible turbulent flows. J Comput Phys 229(5):1739–1762

    MathSciNet  MATH  Google Scholar 

  77. Komala-Sheshachala S, Sevilla R, Hassan O (2020) A coupled HDG-FV scheme for the simulation of transient inviscid compressible flows. Comput Fluids 202:104495

    MathSciNet  MATH  Google Scholar 

  78. Kotteda VK, Mittal S (2014) Stabilized finite-element computation of compressible flow with linear and quadratic interpolation functions. Int J Numer Methods Fluids 75(4):273–294

    MathSciNet  Google Scholar 

  79. Krivodonova L, Berger M (2006) High-order accurate implementation of solid wall boundary conditions in curved geometries. J Comput Phys 211(2):492–512

    MathSciNet  MATH  Google Scholar 

  80. Kroll N (2009) ADIGMA: a European project on the development of adaptive higher order variational methods for aerospace applications. Aerospace Sciences meetings. American Institute of Aeronautics and Astronautics

  81. Lax PD (1954) Weak solutions of nonlinear hyperbolic equations and their numerical computation. Commun Pure Appl Math 7(1):159–193

    MathSciNet  MATH  Google Scholar 

  82. Lehrenfeld C, Schöberl J (2016) High order exactly divergence-free hybrid discontinuous Galerkin methods for unsteady incompressible flows. Comput Methods Appl Mech Eng 307:339–361

    MathSciNet  MATH  Google Scholar 

  83. Mengaldo G, Grazia DD, Witherden F, Farrington A, Vincent P, Sherwin S, Peiro J (2014) A guide to the implementation of boundary conditions in compact high-order methods for compressible aerodynamics. AIAA Paper

  84. Mittal S, Yadav S (2001) Computation of flows in supersonic wind-tunnels. Comput Methods Appl Mech Eng 191(6–7):611–634

    MATH  Google Scholar 

  85. Montlaur A, Fernández-Méndez S, Huerta A (2008) Discontinuous Galerkin methods for the Stokes equations using divergence-free approximations. Int J Numer Methods Fluids 57(9):1071–1092

    MathSciNet  MATH  Google Scholar 

  86. Moro D, Nguyen N, Peraire J (2011) Navier–Stokes solution using hybridizable discontinuous Galerkin methods. AIAA Paper

  87. Moro D, Nguyen NC, Peraire J (2016) Dilation-based shock capturing for high-order methods. Int J Numer Methods Fluids 82(7):398–416

    MathSciNet  Google Scholar 

  88. Moro D, Nguyen NC, Peraire J, Drela M (2017) Mesh topology preserving boundary-layer adaptivity method for steady viscous flows. AIAA Paper 55(6):1970–1985

    Google Scholar 

  89. Moura RC, Mengaldo G, Peiró J, Sherwin SJ (2017) On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES/under-resolved DNS of Euler turbulence. J Comput Phys 330:615–623

    MathSciNet  MATH  Google Scholar 

  90. Moura RC, Sherwin SJ, Peiró J (2015) Linear dispersion–diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J Comput Phys 298:695–710

    MathSciNet  MATH  Google Scholar 

  91. Moura RC, Sherwin SJ, Peiró J (2015) On DG-based iLES approaches at very high Reynolds numbers. Tech. rep., Imperial College London

  92. Nguyen N, Peraire J, Cockburn B (2015) A class of embedded discontinuous Galerkin methods for computational fluid dynamics. J Comput Phys 302:674–692

    MathSciNet  MATH  Google Scholar 

  93. Nguyen NC, Peraire J (2011) An adaptive shock-capturing HDG method for compressible flows. AIAA Paper 3060

  94. Nguyen NC, Peraire J (2012) Hybridizable discontinuous Galerkin methods for partial differential equations in continuum mechanics. J Comput Phys 231(18):5955–5988

    MathSciNet  MATH  Google Scholar 

  95. Nguyen NC, Peraire J, Cockburn B (2009) An implicit high-order hybridizable discontinuous Galerkin method for linear convection–diffusion equations. J Comput Phys 228(9):3232–3254

    MathSciNet  MATH  Google Scholar 

  96. Nguyen NC, Peraire J, Cockburn B (2009) An implicit high-order hybridizable discontinuous Galerkin method for nonlinear convection–diffusion equations. J Comput Phys 228(23):8841–8855

    MathSciNet  MATH  Google Scholar 

  97. Nguyen NC, Peraire J, Cockburn B (2011) An implicit high-order hybridizable discontinuous Galerkin method for the incompressible Navier–Stokes equations. J Comput Phys 230(4):1147–1170

    MathSciNet  MATH  Google Scholar 

  98. Oikawa I (2015) Analysis of a reduced-order HDG method for the Stokes equations. J Sci Comput 67(2):475–492

    MathSciNet  MATH  Google Scholar 

  99. Peery K, Imlay S (1988) Blunt-body flow simulations. AIAA Paper 2904

  100. Peraire J, Nguyen C, Cockburn B (2011) an embedded discontinuous Galerkin method for the compressible Euler and Navier–Stokes equations. AIAA Paper 3228

  101. Peraire J, Nguyen NC, Cockburn B (2010) A hybridizable discontinuous Galerkin method for the compressible Euler and Navier–Stokes Equations. AIAA Paper 363

  102. Persson PO (2013) Shock capturing for high-order discontinuous Galerkin simulation of transient flow problems. AIAA Paper 3061

  103. Persson PO, Peraire J (2006) Sub-cell shock capturing for discontinuous Galerkin methods. AIAA Paper 0112

  104. Perthame B, Shu CW (1996) On positivity preserving finite volume schemes for Euler equations. Numer Math 73(1):119–130

    MathSciNet  MATH  Google Scholar 

  105. Qamar A, Hasan N, Sanghi S (2006) New scheme for the computation of compressible flows. AIAA J 44(5):1025–1039

    Google Scholar 

  106. Qiu J, Khoo BC, Shu CW (2006) A numerical study for the performance of the Runge–Kutta discontinuous Galerkin method based on different numerical fluxes. J Comput Phys 212(2):540–565

    MathSciNet  MATH  Google Scholar 

  107. Qiu W, Shen J, Shi K (2017) An HDG method for linear elasticity with strong symmetric stresses. Math Comput 87(309):69–93

    MathSciNet  MATH  Google Scholar 

  108. Qiu W, Shi K (2016) A superconvergent HDG method for the incompressible Navier–Stokes equations on general polyhedral meshes. IMA J Numer Anal 36(4):1943–1967

    MathSciNet  MATH  Google Scholar 

  109. Quirk JJ (1994) A contribution to the great Riemann solver debate. Int J Numer Methods Fluids 18(6):555–574

    MathSciNet  MATH  Google Scholar 

  110. Randall J, Leveque LRJ (2013) Finite volume methods for hyperbolic problems. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  111. Roca X, Nguyen C, Peraire J (2013) Scalable parallelization of the hybridized discontinuous Galerkin method for compressible flow. AIAA Paper

  112. Roe PL (1981) Approximate Riemann solvers, parameter vectors, and difference schemes. J Comput Phys 43(2):357–372

    MathSciNet  MATH  Google Scholar 

  113. Rohde A (2001) Eigenvalues and eigenvectors of the Euler equations in general geometries. AIAA Paper

  114. Samii A, Dawson C (2018) An explicit hybridized discontinuous Galerkin method for Serre–Green–Naghdi wave model. Comput Methods Appl Mech Eng 330:447–470. https://doi.org/10.1016/j.cma.2017.11.001

    Article  MathSciNet  MATH  Google Scholar 

  115. Samii A, Kazhyken K, Michoski C, Dawson C (2019) A comparison of the explicit and implicit hybridizable discontinuous Galerkin methods for nonlinear shallow water equations. J Sci Comput 80(3):1936–1956. https://doi.org/10.1007/s10915-019-01007-z

    Article  MathSciNet  MATH  Google Scholar 

  116. Schlichting H, Gersten K (2016) Boundary-layer theory. Springer, Berlin

    MATH  Google Scholar 

  117. Schütz J, May G (2013) An adjoint consistency analysis for a class of hybrid mixed methods. IMA J Numer Anal 34(3):1222–1239

    MathSciNet  MATH  Google Scholar 

  118. Schütz J, May G (2013) A hybrid mixed method for the compressible Navier–Stokes equations. J Comput Phys 240:58–75

    MathSciNet  MATH  Google Scholar 

  119. Schütz J, Woopen M, May G (2012) A hybridized DG/mixed scheme for nonlinear advection-diffusion systems, including the compressible Navier–Stokes equations. AIAA Paper

  120. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method for Euler equations. Int J Numer Methods Fluids 57(9):1051–1069

    MathSciNet  MATH  Google Scholar 

  121. Sevilla R, Fernández-Méndez S, Huerta A (2008) NURBS-enhanced finite element method (NEFEM). Int J Numer Methods Eng 76(1):56–83

    MathSciNet  MATH  Google Scholar 

  122. Sevilla R, Giacomini M, Karkoulias A, Huerta A (2018) A superconvergent hybridisable discontinuous Galerkin method for linear elasticity. Int J Numer Methods Eng 116(2):91–116

    MathSciNet  MATH  Google Scholar 

  123. Sevilla R, Gil AJ, Weberstadt M (2017) A high-order stabilised ale finite element formulation for the euler equations on deformable domains. Comput Struct 181:89–102

    Google Scholar 

  124. Sevilla R, Hassan O, Morgan K (2013) An analysis of the performance of a high-order stabilised finite element method for simulating compressible flows. Comput Methods Appl Mech Eng 253:15–27

    MathSciNet  MATH  Google Scholar 

  125. Sevilla R, Huerta A (2016) Tutorial on hybridizable discontinuous Galerkin (HDG) for second-order elliptic problems. In: Schröder J, Wriggers P (eds) Advanced l. CISM International Centre for Mechanical Sciences, vol 566, pp 105–129. Springer

  126. Shakib F, Hughes TJ, Johan Z (1991) A new finite element formulation for computational fluid dynamics: X. The compressible Euler and Navier–Stokes equations. Comput Methods Appl Mech Eng 89(1–3):141–219

    MathSciNet  Google Scholar 

  127. Slotnick JP, Khodadoust A, Alonso JJ, Darmofal DL, Gropp W, Lurie E, Mavriplis DJ (2014) Cfd vision 2030 study: a path to revolutionary computational aerosciences. Tech. rep., NASA

  128. Sørensen K, Hassan O, Morgan K, Weatherill N (2003) A multigrid accelerated hybrid unstructured mesh method for 3D compressible turbulent flow. Comput Mech 31(1–2):101–114

    MATH  Google Scholar 

  129. Thibert JJ, Granjacques M, Ohman LH (1979) NACA 0012 airfoil. AGARD advisory report AR–138 A1

  130. Toro EF (2009) Riemann solvers and numerical methods for fluid dynamics. Springer, Berlin

    MATH  Google Scholar 

  131. Tuck EO (1991) A criterion for leading-edge separation. J Fluid Mech 222(–1):33

    MATH  Google Scholar 

  132. Von Neumann J, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21(3):232–237

    MathSciNet  MATH  Google Scholar 

  133. Vymazal M, Koloszar L, D’Angelo S, Villedieu N, Ricchiuto M, Deconinck H (2015) High-order residual distribution and error estimation for steady and unsteady compressible flow. In: Notes on numerical fluid mechanics and multidisciplinary design, pp 381–395. Springer

  134. Wang Z, Liu Y (2006) Extension of the spectral volume method to high-order boundary representation. J Comput Phys 211(1):154–178

    MATH  Google Scholar 

  135. Wang ZJ, Fidkowski K, Abgrall R, Bassi F, Caraeni D, Cary A, Deconinck H, Hartmann R, Hillewaert K, Huynh HT, Kroll N, May G, Persson PO, van Leer B, Visbal M (2013) High-order CFD methods: current status and perspective. Int J Numer Methods Fluids 72(8):811–845

    MathSciNet  Google Scholar 

  136. Williams DM (2018) An entropy stable, hybridizable discontinuous Galerkin method for the compressible Navier–Stokes equations. Math Comput 87(309):95–121

    MathSciNet  MATH  Google Scholar 

  137. Woopen M, Balan A, May G, Schütz J (2014) A comparison of hybridized and standard DG methods for target-based hp-adaptive simulation of compressible flow. Comput Fluids 98:3–16

    MathSciNet  MATH  Google Scholar 

  138. Woopen M, Ludescher T, May G (2014) A hybridized discontinuous Galerkin method for turbulent compressible flow. AIAA Paper

  139. Yano M, Darmofal DL (2012) Case C1. 3: flow over the NACA 0012 airfoil: subsonic inviscid, transonic inviscid, and subsonic laminar flows. In: First international workshop on high-order CFD methods

  140. Yoshihara H, Sacher P (1985) Test cases for inviscid flow field methods. AGARD advisory report AR-211

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jordi Vila-Pérez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was partially supported by the Spanish Ministry of Economy and Competitiveness (Grant Number: DPI2017-85139-C2-2-R). J.V.P. was supported by the Spanish Ministry of Economy and Competitiveness, through the María de Maeztu programme for units of excellence in R&D (Grant Number: MDM-2014-0445). M.G. and A.H. are also grateful for the support provided by the Spanish Ministry of Economy and Competitiveness through the Severo Ochoa programme for centres of excellence in RTD (Grant Number: CEX2018-000797-S) and the Generalitat de Catalunya (Grant Number: 2017-SGR-1278). R.S. also acknowledges the support of the Engineering and Physical Sciences Research Council (Grant Number: EP/P033997/1).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vila-Pérez, J., Giacomini, M., Sevilla, R. et al. Hybridisable Discontinuous Galerkin Formulation of Compressible Flows. Arch Computat Methods Eng 28, 753–784 (2021). https://doi.org/10.1007/s11831-020-09508-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11831-020-09508-z

Keywords

Mathematics Subject Classification

Navigation