Skip to main content

Advertisement

Log in

Optimization of Viscosity in MWCNT-MgO (35–65%)/5W50 Nanofluid and Comparison of Experimental Results with the Designed ANN

  • Research Article-Physics
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

This study was on the optimization of the viscosity of MWCNT-MgO (35–65%)/5W50 nanofluid and comparison of experimental results with the designed artificial neural network (ANN). The experimental examination was performed at solid volume fraction (SVF) s of 0.05, 0.1, 0.25, 0.5, 0.75, 1% and the temperature of 5–55 °C. A mathematical relationship was proposed to predict its viscosity using the RSM method in Design-Expert software. The viscosity of this nanofluid was also optimized concerning temperature, SVF, and shear rate (SR). A point with a specification of T = 54.45 (°C), SVF = 0.06%, and  SR = 11,899.24 (1/s) had an optimum viscosity of 39.0754 mPa s. Specification parameters of the ANN model were reported in this study as well. The results of the proposed mathematical correlation could not accurately predict, as well as the ANN and the predictions provided by ANN were more accurate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang, X.; Xu, X.; Choi, S.U.: Thermal conductivity of nanoparticle-fluid mixture. J. Thermophys. Heat Transf. 13(4), 474–480 (1999)

    Article  Google Scholar 

  2. Salari, M.; Malekshah, E.H.; Esfe, M.H.: Three dimensional simulation of natural convection and entropy generation in an air and MWCNT/water nanofluid filled cuboid as two immiscible fluids with emphasis on the nanofluid height ratio's effects. J. Mol. Liq. 227, 223–233 (2017)

    Article  Google Scholar 

  3. Esfe, M.H.; Saedodin, S.; Biglari, M.; Rostamian, H.: Experimental investigation of thermal conductivity of CNTs-Al2O3/water: a statistical approach. Int. Commun. Heat Mass Transfer 69, 29–33 (2015)

    Article  Google Scholar 

  4. Esfe, M.H.; Yan, W.M.; Akbari, M.; Karimipour, A.; Hassani, M.: Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int. Commun. Heat and Mass Transfer 68, 248–251 (2015)

    Article  Google Scholar 

  5. Esfe, M.H.; Hajmohammad, H.; Moradi, R.; Arani, A.A.A.: Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method. Appl. Therm. Eng. 112, 1648–1657 (2017)

    Article  Google Scholar 

  6. Esfe, M.H.; Arani, A.A.A.; Badi, R.S.; Rejvani, M.: ANN modeling, cost performance and sensitivity analyzing of thermal conductivity of DWCNT–SiO 2/EG hybrid nanofluid for higher heat transfer. J. Therm. Anal. Calorim. 131(3), 2381–2393 (2018)

    Article  Google Scholar 

  7. Esfe, M.H.; Esfandeh, S.; Afrand, M.; Rejvani, M.; Rostamian, S.H.: Experimental evaluation, new correlation proposing and ANN modeling of thermal properties of EG based hybrid nanofluid containing ZnO-DWCNT nanoparticles for internal combustion engines applications. Appl. Therm. Eng. 133, 452–463 (2018)

    Article  Google Scholar 

  8. Esfe, M.H.; Rostamian, H.; Shabani-Samghabadi, A.; Arani, A.A.A.: Application of three-level general factorial design approach for thermal conductivity of MgO/water nanofluids. Appl. Therm. Engi. 127, 1194–1199 (2017)

    Article  Google Scholar 

  9. Esfe, M.H.; Hajmohammad, M.H.; Razi, P.; Ahangar, M.R.H.; Arani, A.A.A.: The optimization of viscosity and thermal conductivity in hybrid nanofluids prepared with magnetic nanocomposite of nanodiamond cobalt-oxide (ND-Co3O4) using NSGA-II and RSM. Int. Commun. Heat and Mass Transfer 79, 128–134 (2016)

    Article  Google Scholar 

  10. Fereidoon, A.; Saedodin, S.; Hemmat Esfe, M.; Noroozi, M.J.: Evaluation of mixed convection in inclined square lid-driven cavity filled with Al2O3/water nano-fluid. Eng. Appl. Comput. Fluid Mech. 7(1), 55–65 (2013)

    Google Scholar 

  11. Illbeigi, M.; Solaimany Nazar, A.: Numerical simulation of laminar convective heat transfer and pressure drop of water based-Al2O3 nanofluid as a non newtonian fluid by computational fluid dynamic (CFD). Transp. Phenom. Nano Micro Scales 5(2), 130–138 (2017)

    Google Scholar 

  12. Esfe, M.H.; Arani, A.A.A.; Niroumand, A.H.; Yan, W.M.; Karimipour, A.: Mixed convection heat transfer from surface-mounted block heat sources in a horizontal channel with nanofluids. Int. J. Heat Mass Transf. 89, 783–791 (2015)

    Article  Google Scholar 

  13. Eshaghi, A.; Mojab, M.: Hydrophilicity of silica nano-porous thin films: calc fects of multi-walled carbon nanotubes on rheological behavior of engine ination Temperature Effects. J. Nanostruct. 7(2), 127–133 (2017)

    Google Scholar 

  14. Koca, H.D.; Doganay, S.; Turgut, A.; Tavman, I.H.; Saidur, R.; Mahbubul, I.M.: Effect of particle size on the viscosity of nanofluids: a review. Renew. Sustain. Energy Rev. 82, 1664–1674 (2018)

    Article  Google Scholar 

  15. Tseng, W.J.; Lin, K.C.: Rheology and colloidal structure of aqueous TiO2 nanoparticle suspensions. Mater. Sci. Eng. A 355(1–2), 186–192 (2003)

    Article  Google Scholar 

  16. Hemmati-Sarapardeh, A.; Varamesh, A.; Husein, M.M.; Karan, K.: On the evaluation of the viscosity of nanofluid systems: modeling and data assessment. Renew. Sustain. Energy Rev. 81, 313–329 (2018)

    Article  Google Scholar 

  17. Murshed, S.S.; Estellé, P.: A state of the art review on viscosity of nanofluids. Renew. Sustain. Energy Rev. 76, 1134–1152 (2017)

    Article  Google Scholar 

  18. Jeong, J.; Li, C.; Kwon, Y.; Lee, J.; Kim, S.H.; Yun, R.: Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int. J. Refrig. 36(8), 2233–2241 (2013)

    Article  Google Scholar 

  19. Sepyani, K.; Afrand, M.; Esfe, M.H.: An experimental evaluation of the effect of ZnO nanoparticles on the rheological behavior of engine oil. J. Mol. Liq. 236, 198–204 (2017)

    Article  Google Scholar 

  20. Pramuanjaroenkij, A.; Tongkratoke, A.; Kakaç, S.J.J.O.E.P.: Numerical study of mixing thermal conductivity models for nanofluid heat transfer enhancement. J. Eng. Phys. Thermophys. 91(1), 104–114 (2018)

    Article  Google Scholar 

  21. Ehteram, H.; Abbasian Arani, A.; Sheikhzadeh, G.; Aghaei, A.; Malihi, A.: The effect of various conductivity and viscosity models considering Brownian motion on nanofluids mixed convection flow and heat transfer. Transp. Phenom. Nano Micro Scales 4(1), 19–28 (2016)

    Google Scholar 

  22. Esfe, M.H.; Motahari, K.; Sanatizadeh, E.; Afrand, M.; Rostamian, H.; Ahangar, M.R.H.: Estimation of thermal conductivity of CNTs-water in low temperature by artificial neural network and correlation. Int. Commun. Heat Mass Transf. 76, 376–381 (2016)

    Article  Google Scholar 

  23. Zeeshan, A.; Shehzad, N.; Ellahi, R.; Alamri, S.Z.: Convective poiseuille flow of Al2O3-EG nanofluid in a porous wavy channel with thermal radiation. Neural Comput. Appl. 30(11), 3371–3382 (2018)

    Article  Google Scholar 

  24. Raei, B.; Shahraki, F.; Jamialahmadi, M.; Peyghambarzadeh, S.M.: Experimental investigation on the heat transfer performance and pressure drop characteristics of γ-Al2O3/water nanofluid in a double tube counter flow heat exchanger. Transp. Phenom. Nano Micro Scales 5(1), 64–75 (2016)

    Google Scholar 

  25. Mohebbi, R.; Rashidi, M.M.; Izadi, M.; Sidik, N.A.C.; Xian, H.W.: Forced convection of nanofluids in an extended surfaces channel using lattice Boltzmann method. Int. J. Heat Mass Transf. 117, 1291–1303 (2018)

    Article  Google Scholar 

  26. Shi, L.; He, Y.; Hu, Y.; Wang, X.: Thermophysical properties of Fe3O4@ CNT nanofluid and controllable heat transfer performance under magnetic field. Energy Convers. Manag. 177, 249–257 (2018)

    Article  Google Scholar 

  27. Shi, L.; Hu, Y.; He, Y.: Magneto-responsive thermal switch for remote-controlled locomotion and heat transfer based on magnetic nanofluid. Nano Energy 71, 104582 (2020)

    Article  Google Scholar 

  28. Choi, S.U.; Eastman, J.A.: Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135-29). Argonne National Lab., IL, United States (1995)

    Google Scholar 

  29. Esfe, M.H.; Arani, A.A.A.; Rezaie, M.; Yan, W.M.; Karimipour, A.: Experimental determination of thermal conductivity and dynamic viscosity of Ag–MgO/water hybrid nanofluid. Int. Commun. Heat Mass Transfer 66, 189–195 (2015)

    Article  Google Scholar 

  30. Esfe, M.H.; Esfandeh, S.; Arani, A.A.A.: Proposing a modified engine oil to reduce cold engine start damages and increase safety in high temperature operating conditions. Powder Technol. 355, 251–263 (2019)

    Article  Google Scholar 

  31. Esfe, M.H.; Arani, A.A.A.; Esfandeh, S.; Afrand, M.: Proposing new hybrid nano-engine oil for lubrication of internal combustion engines: Preventing cold start engine damages and saving energy. Energy 170, 228–238 (2019)

    Article  Google Scholar 

  32. Esfe, M.H.; Arani, A.A.A.; Esfandeh, S.: Improving engine oil lubrication in light-duty vehicles by using of dispersing MWCNT and ZnO nanoparticles in 5W50 as viscosity index improvers (VII). Appl. Therm. Eng. 143, 493–506 (2018)

    Article  Google Scholar 

  33. Esfe, M.H.; Hosseinizadeh, E.; Esfandeh, S.: Flooding numerical simulation of heterogeneous oil reservoir using different nanoscale colloidal solutions. J. Mol. Liq. 302, 111972 (2020)

    Article  Google Scholar 

  34. Esfe, M.H.; Esfandeh, S.: 3D numerical simulation of the enhanced oil recovery process using nanoscale colloidal solution flooding. J. Mol. Liq. 301, 112094 (2020)

    Article  Google Scholar 

  35. Esfe, M.H.; Esfandeh, S.; Hosseinizadeh, E.: Nanofluid flooding for enhanced oil recovery in a heterogeneous two-dimensional anticline geometry. Int. Commun. Heat Mass Transfer 118, 104810 (2020)

    Article  Google Scholar 

  36. Sheikholeslami, M.; Gerdroodbary, M.B.; Moradi, R.; Shafee, A.; Li, Z.: Application of neural network for estimation of heat transfer treatment of Al2O3–H2O nanofluid through a channel. Comput. Methods Appl. Mech. Eng. 344, 1–12 (2019)

    Article  Google Scholar 

  37. Namburu, P.K.; Kulkarni, D.P.; Dandekar, A.; Das, D.K.: Experimental investigation of viscosity and specific heat of silicon dioxide nanofluids. Micro Nano Lett. 2(3), 67–71 (2007)

    Article  Google Scholar 

  38. Safaei, M.R.; Hajizadeh, A.; Afrand, M.; Qi, C.; Yarmand, H.; Zulkifli, N.W.B.M.: Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Phys. A 519, 209–216 (2019)

    Article  Google Scholar 

  39. Karimipour, A.; Ghasemi, S.; Darvanjooghi, M.H.K.; Abdollahi, A.: A new correlation for estimating the thermal conductivity and dynamic viscosity of CuO/liquid paraffin nanofluid using neural network method. Int. Commun. Heat Mass Transf. 92, 90–99 (2018)

    Article  Google Scholar 

  40. Hosseinian Naeini, A.; Baghbani Arani, J.; Narooei, A.; Aghayari, R.; Maddah, H.: Nanofluid thermal conductivity prediction model based on artificial neural network. Transp. Phenom. Nano Micro Scales 4(2), 41–46 (2016)

    Google Scholar 

  41. Esfe, M.H.; Kamyab, M.H.: Viscosity analysis of enriched SAE50 by nanoparticles as lubricant of heavy-duty engines. J. Therm. Anal. Calorim. 140(1), 79–93 (2020)

    Article  Google Scholar 

  42. Al-Waeli, A.H.; Sopian, K.; Kazem, H.A.; Yousif, J.H.; Chaichan, M.T.; Ibrahim, A.; Ruslan, M.H.: Comparison of prediction methods of PV/T nanofluid and nano-PCM system using a measured dataset and artificial neural network. Sol. Energy 162, 378–396 (2018)

    Article  Google Scholar 

  43. Esfe, M.H.; Tilebon, S.M.S.: Statistical and artificial based optimization on thermo-physical properties of an oil based hybrid nanofluid using NSGA-II and RSM. Phys. A 537, 122126 (2020)

    Article  Google Scholar 

  44. Arani, A.A.A.; Alirezaie, A.; Kamyab, M.H.; Motallebi, S.M.: Statistical analysis of enriched water heat transfer with various sizes of MgO nanoparticles using artificial neural networks modeling. Phys. A Stat. Mech. Appl. 554(1–9), 123950 (2020)

    Article  Google Scholar 

  45. Bahiraei, M.; Hosseinalipour, S.M.; Zabihi, K.; Taheran, E.: Using neural network for determination of viscosity in water-TiO2 nanofluid. Adv. Mech. Eng. 4, 742680 (2012)

    Article  Google Scholar 

  46. Esfe, M.H.; Hajmohammad, M.H.: Thermal conductivity and viscosity optimization of nanodiamond-Co3O4/EG (40: 60) aqueous nanofluid using NSGA-II coupled with RSM. J. Mol. Liq. 238, 545–552 (2017)

    Article  Google Scholar 

  47. Meybodi, M.K.; Naseri, S.; Shokrollahi, A.; Daryasafar, A.: Prediction of viscosity of water-based Al2O3, TiO2, SiO2, and CuO nanofluids using a reliable approach. Chemometr. Intell. Lab. Syst. 149, 60–69 (2015)

    Article  Google Scholar 

  48. Vakili, M.; Khosrojerdi, S.; Aghajannezhad, P.; Yahyaei, M.: A hybrid artificial neural network-genetic algorithm modeling approach for viscosity estimation of graphene nanoplatelets nanofluid using experimental data. Int. Commun. Heat Mass Transf. 82, 40–48 (2017)

    Article  Google Scholar 

  49. Mehrabi, M.; Sharifpur, M.; Meyer, J.P.: Viscosity of nanofluids based on an artificial intelligence model. Int. Commun. Heat Mass Transf. 43, 16–21 (2013)

    Article  Google Scholar 

  50. Esfe, M.H.; Wongwises, S.; Naderi, A.; Asadi, A.; Safaei, M.R.; Rostamian, H.; Karimipour, A.: Thermal conductivity of Cu/TiO2–water/EG hybrid nanofluid: experimental data and modeling using artificial neural network and correlation. Int. Commun. Heat Mass Transf. 66, 100–104 (2015)

    Article  Google Scholar 

  51. Cisne, R.L.; Vasconcelos, T.F.; Parteli, E.J.; Andrade, J.S.: Particle transport in flow through a ratchet-like channel. Microfluid. Nanofluid. 10(3), 543–550 (2011)

    Article  Google Scholar 

  52. Vasconcelos, T.F.; Morais, A.F.; Cisne Jr., R.L.; Parteli, E.J.; Andrade Jr., J.S.: Particle separation in a ramified structure. Chem. Eng. Sci. 65(4), 1400–1406 (2010)

    Article  Google Scholar 

  53. Esfe, M.H.: On the evaluation of the dynamic viscosity of non-Newtonian oil based nanofluids. J. Therm. Anal. Calorim. 135(1), 97–109 (2019)

    Article  Google Scholar 

  54. Zhao, N.; Li, Z.: Experiment and artificial neural network prediction of thermal conductivity and viscosity for alumina-water nanofluids. Materials 10(5), 552 (2017)

    Article  MathSciNet  Google Scholar 

  55. Esfe, M.H.; Saedodin, S.; Malekshah, E.H.; Babaie, A.; Rostamian, H.: Mixed convection inside lid-driven cavities filled with nanofluids. J. Therm. Anal. Calorim. 135(1), 813–859 (2019)

    Article  Google Scholar 

  56. Esfe, M.H.; Saedodin, S.; Sina, N.; Afrand, M.; Rostami, S.: Designing an artificial neural network to predict thermal conductivity and dynamic viscosity of ferromagnetic nanofluid. Int. Commun. Heat Mass Transf. 68, 50–57 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hassan Kamyab.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hemmat Esfe, M., Kamyab, M.H. Optimization of Viscosity in MWCNT-MgO (35–65%)/5W50 Nanofluid and Comparison of Experimental Results with the Designed ANN. Arab J Sci Eng 46, 827–840 (2021). https://doi.org/10.1007/s13369-020-05001-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05001-8

Keywords

Navigation