Skip to main content
Log in

Room temperature ammonia gas sensor based on V2O5 nanoplatelets/Quartz crystal microbalance

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

In the present work, we report the deposition of vanadium pentoxide (V2O5) thin film on the quartz crystal microbalance (QCM) using vacuum thermal evaporation method followed by rapid thermal annealing (RTA) in oxygen atmosphere (O2),for gas sensing application. The structure, morphology and surface wettability of the obtained thin film were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM) and contact angle measurement (CA). The results show that the elaborated structure has a porous, rough and hydrophilic characteristic with a pure V2O5 phase in form of nanopaltelets. The sensing properties of V2O5 nanopaltelets /QCM structure were evaluated towards NH3 vapor at room temperature. The result revealed that the sensor exhibited good sensing performance: a fast response time, a short recovery time, good stability, reproducibility, reversibility and linearity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. W.C. Yu, X.D. Wu, Z.C. Si, D. Weng, Influences of impregnation procedure on the SCR activity and alkali resistance of V2O5–WO3/TiO2 catalyst. Appl. Surf. Sci. 283, 209–214 (2013)

    ADS  Google Scholar 

  2. V.I. Parvulescu, S. Boghosian, V. Parvulescu, S.M. Jung, P. Grange, Selective catalytic reduction of NO with NH3 over mesoporous V2O5–TiO2–SiO2 catalysts. J. Catal. 217, 172–185 (2003)

    Google Scholar 

  3. Y. Wang, G. Cao, Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787–2804 (2006)

    ADS  Google Scholar 

  4. A. Gies, B. Pecquenard, A. Benayad, H. Martinez, D. Gonbeau, H. Fuess, A. Levasseur, Effect of silver co-sputtering on V2O5 thin films for lithium microbatteries. Thin Solid Films 516(21), 7271–7281 (2008)

    ADS  Google Scholar 

  5. V. Varadaraajan, B.C.S. Kumar, J. Nandab, P. Mohanty, Direct synthesis of nanostructured V2O5 films using solution plasma spray approach for lithium battery applications. J. Power Sources 196, 10704–10711 (2011)

    ADS  Google Scholar 

  6. F.Y. Kong, M. Li, X.Y. Yao, J.M. Xu, A.D. Wang, Z.P. Liu, G.H. Li, Template-free hydrothermal synthesis of VO2 hollow microspheres. CrystEngComm 14, 3858–3861 (2012)

    Google Scholar 

  7. X. Tian, X. Xu, L. He, Q. Wei, M. Yan, L. Xu, Y. Zhao, C. Yang, L. Mai, Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability. J. Power Sources 255, 235–241 (2014)

    ADS  Google Scholar 

  8. C. Grygiel, C. Simon, B. Mercey et al., Thickness dependence of the electronic properties in V2O3 thin films. Appl. Phys. Lett. 91, 262–103 (2007)

    Google Scholar 

  9. Y.L. Wang, M.C. Li, L.C. Zhao, The effects of vacuum annealing on the structure of VO2 thin films. Surf. Coat. Technol. 201, 6772–6776 (2007)

    Google Scholar 

  10. M.A. Kaid, Characterization of electrochromic vanadium pentoxide thin films prepared by spray pyrolysis. Egypt. J. Solids 29, 273–291 (2006)

    Google Scholar 

  11. S.P. Lim, J.D. Long, S. Xu et al., Nanocrystalline vanadium oxide films synthesized by plasma-assisted reactive RF sputtering deposition. J. Phys. D Appl. Phys. 40, 1085–1090 (2007)

    ADS  Google Scholar 

  12. K.-I. Shimizu, I. Chinzei, H. Nishiyama, S. Kakimotob, S. Sugaya, W. Matsutani, A. Satsuma, Doped-vanadium oxides as sensing materials for high temperature operative selective ammonia gas sensors. Sens. Actuators B 141, 410–416 (2009)

    Google Scholar 

  13. J. Huotari, J. Lappalainen, J. Puustinen, A.L. Spetz, Gas sensing properties of pulsed laser deposited vanadium oxide thin films with various crystal structures. Sens. Actuators B 187, 386–394 (2013)

    Google Scholar 

  14. K. Chebout, A. Iratni, A. Bouremana, S. Sam, A. Keffous, N. Gabouze, Electrical characterization of ethanol sensing device based on vanadium oxide/porous Si/Si structure. Solid State Ionics 253, 164–168 (2013)

    Google Scholar 

  15. V. Modafferi, G. Panzera, A. Donato, P.L. Antonucci, C. Cannilla, N. Donato, D. Spadaro, G. Neri, Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens. Actuators B 163, 61–68 (2012)

    Google Scholar 

  16. Y. Vijayakumar, G.K. Mani, M.V.R. Reddy, J.B.B. Rayappan, N anostructured flower like V2O5 thin films and its room temperature sensing characteristics. Ceram. Int. 41, 2221–2227 (2015)

    Google Scholar 

  17. M. Abbasi, S.M. Rozati, R. Irani, S. Beke, Synthesis and gas sensing behavior of nanostructured V2O5 thin films prepared by spray pyrolysis. Mater. Sci. Semicond. Process. 29, 132–138 (2015)

    Google Scholar 

  18. S.-P. Cho, J.-S. Yeo, D.-Y. Kim, S.-i Na, S.-S. Kim, Brush painted V2O5 hole transport layer for efficient and air-stable polymer solar cells. Sol. Energy Mater. Sol. Cells 132, 196–203 (2015)

    Google Scholar 

  19. R.M. Öksûzoğ, P. Bilgic, M. Yıldırım, O. Deniz, Influence of post-annealing on electrical, structural and optical properties of vanadium oxide thin films. Opt. Laser Technol. 48, 102–109 (2013)

    ADS  Google Scholar 

  20. M.S.B. de Castro, C.L. Ferreira, R.R. de Avillez, Vanadium oxide thin films produced by magnetron sputtering from a V2O5 target at room temperature. Infrared Phys. Technol. 60, 103–107 (2013)

    ADS  Google Scholar 

  21. R. Santos, J. Loureiro, A. Nogueira, E. Elangovan, J.V. Pinto, J.P. Veiga, T. Busani, E. Fortunato, R. Martins, I. Ferreira, Thermoelectric properties of V2O5 thin films deposited by thermal evaporation. Appl. Surf. Sci. 282, 590–594 (2013)

    ADS  Google Scholar 

  22. A. Bouzidi, N. Benramdane, S. Bresson, C. Mathieu, R. Desfeux, M. El Marssi, X-ray and Raman study of spray pyrolysed vanadium oxide thin films. Vib. Spectrosc. 57, 182–186 (2011)

    Google Scholar 

  23. X. Li, X. Chen, Y. Yao, N. Li, X. Chen, High-stability quartz crystal microbalance ammonia sensor utilizing graphene oxide isolation layer. Sens. Actuators B 196, 183–188 (2014)

    Google Scholar 

  24. E.B. Özkütük, S.E. Diltemiz, E. Özalp, A. Ersöz, R. Say, Silan based paraoxon memories onto QCM electrodes. J. Ind. Eng. Chem. 19, 1788–1792 (2013)

    Google Scholar 

  25. M. Boutamine, A. Bellel, S. Sahli, Y. Segui, P. Raynaud, Hexamethyldisiloxane thin films as sensitive coating for quartz crystal microbalance based volatile organic compounds sensors. Thin Solid Films 552, 196–203 (2014)

    ADS  Google Scholar 

  26. S. Iwamori, K. Yoshino, H. Matsumoto, K. Noda, I. Nishiyama, Active oxygen sensors used a quartz crystal microbalance (QCM) with sputter-coated and spin-coated poly(tetrafluoroethylene) thin films. Sens. Actuators B 171–172, 769–776 (2012)

    Google Scholar 

  27. V.A. Minh, L.A. Tuan, T.Q. Huy, V.N. Hung, N.V. Quy, Enhanced NH3 gas sensing properties of a QCM sensor by increasing the length of vertically orientated ZnO nanorods. Appl. Surf. Sci. 265, 458–464 (2013)

    ADS  Google Scholar 

  28. S. Banerjee, D. Konwar, A. Kumar, Polyanailine nanofiber reinforced nanocomposite based highly sensitive piezoelectric sensors for selective detection of hydrochloric acid: analysis of response mechanism. Sens. Actuators B 190, 199–207 (2014)

    Google Scholar 

  29. M.M. Ayad, G. El-Hefnawey, N.L. Torad, Quartz crystal microbalance sensor coated with polyaniline emeraldine base for determination of chlorinated aliphatic hydrocarbons. Sens. Actuators B 134, 887–894 (2008)

    Google Scholar 

  30. Z. Ihdene, A. Mekki, B. Mettaia, R. Mahmouda, B. Hamadab, M.M. Chehimi, Quartz crystal microbalance VOCs sensor based on dip coated polyanilineemeraldine salt thin films. Sens. Actuators B 203, 647–654 (2014)

    Google Scholar 

  31. G.W. Sauerbrey, The use of quartz crystal oscillators for weighting thin layer and for microweighing. Zeitschrift für Physik 155, 206 (1959)

    ADS  Google Scholar 

  32. V. Lazarova, L. Spassov, V. Gueorguiev, S. Andreev, E. Manolov, L. Popova, Quartz resonator with with SnO2 thin film as acoustic gas sensor for NH3. Vacuum 47(12), 1423–1425 (1996)

    ADS  Google Scholar 

  33. V. Georgieva, L. Spassov, N. Donkov, P. Petkov, M. Atanassov, Detection of NH3 by quartz crystal microbalance coated with Ta2O5. Plasma Process. Polym. 3, 209–213 (2006)

    Google Scholar 

  34. A. Kösemen, S. Öztürk, Z. Şen, Z.A. Kösemen, M. Harbeck, Z.Z. Öztürk, Volatile organic compounds and dimethyl methyl phosphonate (DMMP) sensing properties of the metal oxide functionalized QCM transducers at room temperature. J. Electrochem. Soc. 164, B657–B664 (2017)

    Google Scholar 

  35. M. Berouaken, L. Talbi, R. Alkama, S. Sabrina, H. Menari, K. Chebout, A. Manseri, A. Boucheham, N. Gabouze, Quartz crystal microbalance coated with vanadium oxide thin film for CO2 gas sensor at room temperature. Arab. J. Sci. Eng. 43, 5957–5963 (2018)

    Google Scholar 

  36. M.H. Yoon, S. Im, Electrical characteristics of V2O5 thin films formed on p-Si by sputter-deposition and rapid thermal annealing. Appl. Surf. Sci. 244, 444–448 (2005)

    ADS  Google Scholar 

  37. S. Deki, Y. Aoi, Y. Miyake, A. Gotoh, A. Kajinami, novel wet process for preparation of vanadium oxide thin film. Mater. Res. Bull. 31(2), 1399–1406 (1996)

    Google Scholar 

  38. R.N. Wenzel, Surface roughness and contact angle. J. Phys. Chem. 53(9), 1466–1467 (1949)

    Google Scholar 

  39. V. Modafferia, G. Panzera, A. Donato, P.L. Antonucci, C. Cannilla, N. Donato, D. Spadaro, G. Neri, Highly sensitive ammonia resistive sensor based on electrospun V2O5 fibers. Sens. Actuators B 163, 61–68 (2012)

    Google Scholar 

  40. A.D. Raj, P.S. Kumar, Q. Yang, D. Mangalaraj, Synthesis and gas sensors behavior of surfactants free V2O5 nanostructure by using a simple precipitation method. Physica E 44, 1490–1494 (2012)

    ADS  Google Scholar 

  41. J.C. Miller, J.N. Miller, Statistics for Analytical Chemistry, 2nd edn. (Ellis Horwood, London, 1988), p. 117

    Google Scholar 

  42. N. Guermat, A. Bellel, S. Sahli, Y. Ségui, P. Raynaud, Thin plasma polymerized layers of hexamethyldisiloxane for humidity sensor development. Thin Solid Films 517, 4455–4460 (2009)

    ADS  Google Scholar 

  43. P. Shankar, J.B.B. Rayappan, Gas sensing mechanism of metal oxides: the role of ambient atmosphere, type of semiconductor and gases—a review. ScienceJet 4, 126–143 (2015)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Fund of DG-RSDT/MESRS from Algeria (FNR15_17 CRTSE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malika Berouaken.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berouaken, M., Talbi, L., Yaddadene, C. et al. Room temperature ammonia gas sensor based on V2O5 nanoplatelets/Quartz crystal microbalance. Appl. Phys. A 126, 949 (2020). https://doi.org/10.1007/s00339-020-04129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04129-6

Keywords

Navigation