Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 19, 2020

Thermal conversion of CBD grown ZnS thin films to ZnO

  • Kooliyankal Naseema EMAIL logo , Kaniyamkandy Ribin , Nidiyanga Navya and Prasoon Prasannan

Abstract

Nano crystalline zinc sulfide thin films were deposited onto glass substrates by chemical bath deposition method. One of the samples was annealed at 300 °C for 2 h in air using a muffle furnace. The prepared thin films were investigated by X-ray diffraction (XRD), UV–visible spectroscopy (UV–vis), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM) and Raman spectroscopy (FT-R) studies before and after annealing. The analysis confirmed the thermal-induced anion substitution and conversion of ZnS crystal to ZnO wurtzite crystal. XRD pattern showed that these films were phase pure and polycrystalline in nature. Optical band gap was found to be 3.86 eV for ZnS and 3.21 eV for ZnO. The films prepared by this simple, low-cost technique are suitable for photovoltaic and optoelectronic applications.

Keywords: CBD; FT-R; PL; XRD; ZnO; ZnS

Corresponding author: Kooliyankal Naseema, Department of Physics, Nehru Arts and Science College, Kanhangad, India, E-mail:

Acknowledgment

We gratefully acknowledge the technical support provided by STIC, CUSAT, Cochin.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] T. Yamamoto, S. kishimoto, and S. lida, “Catalytic growth and photoluminescence properties of ZnS nanowires,” Physica B, vol. 916, pp. 308–310, 2001.10.1016/S0921-4526(01)00842-0Search in Google Scholar

[2] M. Bredol and J. Merikhi, “ZnS precipitation: morphology control,” J. Mater. Sci., vol. 33, pp. 471–476, 1998, https://doi.org/10.1023/a:1004396519134.10.1023/A:1004396519134Search in Google Scholar

[3] Y. Kavanagh, M. J. Alam, and D. C. Cameron, “The characteristics of thin film electroluminescent displays produced using sol–gel produced tantalum pentoxide and zinc sulfide,” Thin Solid Films, vol. 85, pp. 447–448, 2004, https://doi.org/10.1016/j.tsf.2003.09.027.10.1016/j.tsf.2003.09.027Search in Google Scholar

[4] M. A. Contreras, T. Nakada, M. Hongo, A. O Pudov, and J. R. Sites. Proceedings 3rd World Conference of Photovoltaic Energy Conversion. Osaka, Japan, AIP Applied Physics Letters, 2003, p. 570.10.1016/S1473-8325(03)00623-0Search in Google Scholar

[5] K. Deepa, K. C. Preetha, A. C. Dhanya, and T. L. Remadevi, “Preheated substrate effects on the structural and optical properties of chemically prepared ZnS thin films,” Mater. Sci. Eng., vol. 73, 2015, Art no. 012010, https://doi.org/10.1088/1757-899x/73/1/012010.10.1088/1757-899X/73/1/012010Search in Google Scholar

[6] Z. Y. Zhong, E. S. Cho, and S. J. Kwon, “Characterization of the ZnS thin film buffer layer for Cu (In,Ga) Se2 solar cells deposited by chemical bath deposition process with different solution concentrations,” Mater. Chem. Phys., vol. 135, pp. 287–292, 2012, https://doi.org/10.1016/j.matchemphys.2012.03.090.10.1016/j.matchemphys.2012.03.090Search in Google Scholar

[7] H. Haddad, A. Chelouche, D. Talantikite, H. Merzouk, F. Boudjouanand, and D. Djouad, “Effects of deposition time in chemically deposited ZnS film in acidic solutions,” Thin Solid Films, vol. 589, pp. 451–456, 2015, https://doi.org/10.1016/j.tsf.2015.06.013.10.1016/j.tsf.2015.06.013Search in Google Scholar

[8] T. Liu, H. Ke, H. Zhang, et al., “Effect of four different Zinc salts and annealing treatment on growth, structural, mechanical and optical properties of nanocrystalline ZnS thin films by chemical bath deposition,” Mater. Sci. Semicond. Process., vol. 26, pp. 301–311, 2014, https://doi.org/10.1016/j.mssp.2014.05.003.10.1016/j.mssp.2014.05.003Search in Google Scholar

[9] H. Ke, S. Duo, T. Liu, et al., “Effect of temperature on structural and optical properties of ZnS thin films by chemical bath deposition without stirring the reaction bath,” Mater. Sci. Semicond. Process., vol. 18, pp. 28–35, 2014, https://doi.org/10.1016/j.mssp.2013.10.022.10.1016/j.mssp.2013.10.022Search in Google Scholar

[10] A. H. N. Heejin and U. M. Youngho, “Post annealing Effects on ZnS Thin films Grown by using the CBD method,” J. Kor. Phys. Soc., vol. 67, pp. 1045–1050, 2015. https://doi.org/10.3938/jkps.67.1045.10.3938/jkps.67.1045Search in Google Scholar

[11] A. U. Ubale and D. K. Kulkarni, “Preparation and study of thickness dependent electrical Characteristics of zinc sulfide thin films,” Bull. Mater. Sci., vol. 28, pp. 43–47, 2005, https://doi.org/10.1007/bf02711171.10.1007/BF02711171Search in Google Scholar

[12] R. Wahab, S. G. Ansari, Y-S. Kim, et al., “Effect of annealing on the conversion of ZnS to ZnO nanoparticles synthesized by the sol-gel method using zinc acetate and thiourea,” Met. Mater. Int., vol. 15, pp. 453–458, 2009, https://doi.org/10.1007/s12540-009-0453-5.10.1007/s12540-009-0453-5Search in Google Scholar

[13] S. Maniv and A. Zangvil, “Controlled texture of reactively RF-sputtered ZnO thin films,” J. Appl. Phys., vol. 47, pp. 2787–2792, 1978, https://doi.org/10.1063/1.325158.10.1063/1.325158Search in Google Scholar

[14] X. S. Wang, Z. C. Wu, J. F. Webb, and Z. G. Liu, “Ferroelectric and dielectric properties of Li-doped ZnO thin films prepared by pulsed laser deposition,” Appl. Phys. A, vol. 77, pp. 561–565, 2003, https://doi.org/10.1007/s00339-002-1497-2.10.1007/s00339-002-1497-2Search in Google Scholar

[15] A. G. Shikzlgar, and S. H. Pawar, “Photoconducting properties of cadmium sulphide-lithium thin Films formed by the chemical bath deposition method,” Thin Solid Films, vol. 61, no. 3, pp. 313–320, 1979.10.1016/0040-6090(79)90475-9Search in Google Scholar

[16] A. JesuJebadev, M. Karunakaran, K. Deva Arun Kumar, and S. Valanarasu, “Structural, morphological, optical and PL studies of neodymium doped ZnS glass plate by nebulizer spray pyrolysis method,” Int. J. Sci. Res. Phys. Appl. Sci., vol. 7, pp. 147–150, 2019, https://doi.org/10.26438/ijsrpas/v7i3.147150.10.26438/ijsrpas/v7i3.147150Search in Google Scholar

[17] R. A. Babatunde, Y. I. Bolanle, and O. O. Adegboyo, “Effects of deposition time of ZnS thin film on optical and morphological properties of ZnS deposited by chemical bath deposition method for photovoltaic application,” Phys. Memoir., vol. 1, pp. 38–45, 2019.Search in Google Scholar

[18] S. K. Mehta, S. Kumar, S. Chaudhary, K. K. Bhasin, and M. Gradzielski, “Evolution of ZnS nanoparticles via facile CTAB aqueous micellar solution route: a study on controlling parameters,” Nanoscale Res. Lett., vol. 4, pp. 17–28, 2009, https://doi.org/10.1007/s11671-008-9196-3.10.1007/s11671-008-9196-3Search in Google Scholar PubMed PubMed Central

[19] A. Djelloul, M. Adnane, Y. Larbah, et al., “Properties study of ZnS thin films prepared by spray pyrolysis method,” J. Nano Electron. Phys., vol. 7, pp. 04045–04049, 2015.Search in Google Scholar

[20] T. E. Manjulavalli and A. G. Kannan, “Structural and optical properties of ZnS thin films prepared by chemical bath deposition method,” Int. J. Chem. Res., vol. 8, pp. 396–402, 2015.Search in Google Scholar

[21] A. H. O. Al-khayatt and M. D. Jaafer, “Characteristics of Nanocrystalline ZnS thin films grown on glass with different Zn ion concentrations by CBD technique,” IOSR J. Appl. Phys., vol. 6, pp. 27–35, 2014, e-ISSN: 2278-4861.10.9790/4861-06132735Search in Google Scholar

[22] A. C. Dhanya, K. V. Murali, K. C. Preetha, K. Deepa, and A. J. Ragina, “Effect of deposition time on optical and luminescence properties of ZnS thin films prepared by photoassisted chemical deposition technique,” Mater. Sci. Semicond. Process., vol. 16, pp. 955–962, 2013, https://doi.org/10.1016/j.mssp.2013.01.025.10.1016/j.mssp.2013.01.025Search in Google Scholar

[23] T. L. Remadevi and A. C. Dhanya, “Photoassisted chemical deposition of nano crystalline ZnS thin films from aqueous alkaline bath,” Arch. Phy. Res, vol. 2, pp. 128–136, 2011.Search in Google Scholar

[24] S. Temel, F. O. Gokmen, and E. Yaman, “An Energy efficient way to produce Zinc- based semiconductor Thin films via chemical bath deposition technique,” J. Sustain. Dev. Energy Water Environ. Syst., vol. 7, pp. 253–260, 2019, https://doi.org/10.13044/j.sdewes.d6.0239.10.13044/j.sdewes.d6.0239Search in Google Scholar

[25] S. Teehan, H. Efstathiadis, and P. Haldar, “Enhanced power factor of Indium co-doped ZnO:Al thin films deposited by RF sputtering for high temperature thermoelectrics,” J. Alloys Compd., vol. 509, pp. 1094–1098, 2011, https://doi.org/10.1016/j.jallcom.2010.10.004.10.1016/j.jallcom.2010.10.004Search in Google Scholar

[26] H-Y. Lu, S-Y. Chu, and S-S. Tan, “The characteristics of low-temperature-synthesized ZnS and ZnO nanoparticles,” J. Cryst. Growth, vol. 269, pp. 385–391, 2004, https://doi.org/10.1016/j.jcrysgro.2004.05.050.10.1016/j.jcrysgro.2004.05.050Search in Google Scholar

[27] J. Dong, X. Zeng, W. Xia, X. Zhang, M. Zhou, and C. Wang, “Ferromagnetic behavior of non-stoichiometric ZnS microspheres with a nanoplate-netted surface,” RSC Adv., vol. 7, pp. 20874–20881, 2017, https://doi.org/10.1039/c7ra02521a.10.1039/C7RA02521ASearch in Google Scholar

[28] X. Zeng, S. S. Pramana, S. K. Batabyal, S. G Mhaisalkar, X. Chen, and K. B. Jinesh, “Low temperature synthesis of wurtzite zinc sulfide (ZnS) thin films by chemical spray pyrolysis,” Phys. Chem. Chem. Phys., vol. 15, p. 6763, 2013, https://doi.org/10.1039/c3cp43470b.10.1039/c3cp43470bSearch in Google Scholar

[29] A. Zendehnam, M. Mirzaee, and S. Miri, “Effect of annealing temperature on PL spectrum and surface morphology of zinc oxide thin films,” Appl. Surf. Sci., vol. 270, pp. 163–168, 2013, https://doi.org/10.1016/j.apsusc.2012.12.154.10.1016/j.apsusc.2012.12.154Search in Google Scholar

[30] H. A. Ahn, Y. Y. Kim, D. C. Kim, S. K. Mohanta, and H. K. Cho, “A comparative analysis of deep level emission in ZnO layers deposited by various methods,” J. Appl. Phys., vol. 105, 2009, Art no. 013502, https://doi.org/10.1063/1.3112042.10.1063/1.3054175Search in Google Scholar

[31] A.F. Kohan, G. Ceder, D. Morgan, and C.G. van de Walle, “First-principles study of native point defects in ZnO,” Phys. Rev. B, vol. 22, p. 15019, 2000, https://doi.org/10.1103/physrevb.61.15019.10.1103/PhysRevB.61.15019Search in Google Scholar

[32] M. Abdulkbadar and B. Thomas, “Study of Raman spectra of nanoparticles of CdS and ZnS,” Nanostruct. Mater., vol. 5, pp. 289–298, 1995, https://doi.org/10.1016/0965-9773(95)00237-9.10.1016/0965-9773(95)00237-9Search in Google Scholar

[33] R. Keshav and M. G. Mahesha, “Photoluminescence and Raman spectroscopic analysis of PV deposited ZnS thin films,” Mater. Res. Bull., vol. 105, pp. 360–367, 2018, https://doi.org/10.1016/j.materresbull.2018.05.018.10.1016/j.materresbull.2018.05.018Search in Google Scholar

[34] X. Yan, W. Li, A. G. Aberle, and S. Venkataraj, “Investigation of the thickness effect on material and surface texturing properties of sputtered ZnO:Al films for thin-film Si solar cell applications,” Vacuum, vol. 123, pp. 151–159, 2016, https://doi.org/10.1016/j.vacuum.2015.10.027.10.1016/j.vacuum.2015.10.027Search in Google Scholar

[35] P. P. Murmu, J. Kennedy, B. J. Ruck, and J. Leveneur, “Structural, electronic and magnetic properties of Er implanted ZnO thin films,” Nucl. Instrum. Methods Phys. Res. B, vol. 359, pp. 1–4, 2015, https://doi.org/10.1016/j.nimb.2015.07.034.10.1016/j.nimb.2015.07.034Search in Google Scholar

Received: 2020-05-21
Accepted: 2020-10-27
Published Online: 2020-11-19
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/zna-2020-0137/html
Scroll to top button