Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 18, 2020

The component composition of planted pine wood cultivated in the boreal zone

  • D. A. Danilov , A. V. Griazkin , V. A. Sokolova and I. V. Bacherikov ORCID logo EMAIL logo

Abstract

The present study analyzes the composition of pine wood cultivated on artificial plantations in the Leningrad Oblast (Region). Comparing to pine wood from natural stands, a smaller heartwood zone along the height of the pine trunk and a lower content of resinous substances are noted. The content of cellulose and lignin in the heartwood and sapwood of pine is distributed differently along the trunk. The distribution of pentosans and water-soluble substances in the heartwood and sapwood along the trunk is associated with the lignin complex. The component composition of the studied pine wood from planted stands is quite uniform in its indicators if compared to the wood of older natural stands. Sulphate pulping of planted pine wood showed a higher yield of technical cellulose than the average yield from wood obtained at natural stands of the studied region.

Funding statement: Authors state no funding involved.

  1. Conflict of interest: The authors declare that they have no conflict of interest.

References

Akim, G. L., Belodubrovsky, R. B., Burov, A. V., Germer, E. I., Danilov, A. V., Evstigneev, E. I., Laptev, V. N., Mironova, T. Y., Novikova, A. I., Puzyrev, S. S., Strunnikov, V. N., Filatov, B. N., Shorohov, V. V., Shpakov, F. V. Technology of pulp and paper production: handbook. In 3 volumes. Volume 1. Part 2. Polytechnika, St. Petersburg, 2003.Search in Google Scholar

Alén, R. (2000) Structure and chemical composition of wood. For. Prod. Chem.Search in Google Scholar

Arjas, A., Korpela, A. (2003) Mechanical Pine Pulp – A Potential Fibre Source Concealed by Resin. Int. Pap. IPW.Search in Google Scholar

Azarov, V. I., Burov, A. V., Obolenskaya, A. V. Chemistry of wood and synthetic polymers: a textbook. Lan, St. Petersburg, 2010.Search in Google Scholar

Barua, S. K., Lehtonen, P., Pahkasalo, T. (2014) Plantation vision: potentials, challenges and policy options for global industrial forest plantation development. Int. For. Rev.10.1505/146554814811724801Search in Google Scholar

Borovikov, A. M., Ugolev, B. N. (1989) Guide for wood: handbook, Ed. Ugolev, B. N. Lesnaya promyslennost, Moscow.Search in Google Scholar

Brown, C. (2000) The global outlook for future wood supply from forest plantations.Search in Google Scholar

Carle, J., Holmgren, P. (2008) Wood from planted forests A global outlook 2005–2030. For. Prod. J.10.1079/9781845935641.0047Search in Google Scholar

Danilov, D. A. (2019) Qualitative And Quantitative Characteristics Of Wood Spruce And Pine In Plantation Cultivation In The North-West Of Russia, In: Preserv. For. Ecosyst. Proc. Second Int. Sci. Conf. Vyatka State University, Kirov, pp. 74–78.Search in Google Scholar

Demakov, Y. P., Nureeva, T. V., Puryaev, A. S., Krasnov, V. G. (2018) Economic basis and an experience of plantation forest growing in the Central Volga Region. Sib. Lesn. Z. 2:3–14.Search in Google Scholar

Dönmez, I., Hafızoğlu, H., Kilic, A. (2013) Effect of Altitude on the Main Chemical Composition of Scots pine (Pinus sylvestris L.). In: Int. Cauc. For. Symp. pp. 866–869.Search in Google Scholar

Ek, M., Gellerstedt, G., Henriksson, G. (2009) Wood chemistry and wood biotechnology. Wood Chem. Wood Biotechnol.10.1515/9783110213409Search in Google Scholar

Fedotova, N. N., Yolkin, V. A. (2018) The feedstock chemical composition (wood pine), cellolignin and hydrolyzate obtained with alcohol boiling [Химический состав исходного сырья (древесной сосны), целлолигнина и гидролизата, полученного от спиртовой варки] Izv. Sankt-Peterburgskoj Lesoteh. Akad. [Известия Санкт-Петербургской лесотехнической академии] 222:254–262.10.21266/2079-4304.2018.222.254-262Search in Google Scholar

Fengel, D., Wegener, G. (2011) Wood: Chemistry, ultrastructure, reactions. Wood Chem. Ultrastruct. React.10.1515/9783110839654Search in Google Scholar

Geles, I. S. Raw timber as a strategic basis and reserve for the civilization. Forest Institute KarRC RAS, Petrozavodsk, 2007.Search in Google Scholar

Gellerstedt, G., Ek, M., Henriksson, G. (2009) Wood chemistry and biotechnology. Wood Chem. Biotechnol.Search in Google Scholar

Grebenshikov, V. V., Kovalev, M. S. (2001) Choice of the main species at creation of forest plantation. Proc. Saint Petersbg. For. Res. Inst. 4(8):79–85.Search in Google Scholar

Hillis, W. E. Wood Extractives and their Significance to the Pulp and Paper Industries, Wood Extr. their Significance to Pulp Pap. Ind. Academic Press, 1962.Search in Google Scholar

Kilpeläinen, A., Peltola, H., Ryyppö, A., Sauvala, K., Laitinen, K., Kellomäki, S. (2003) Wood properties of Scots pines (Pinus sylvestris) grown at elevated temperature and carbon dioxide concentration. Tree Physiol.10.1093/treephys/23.13.889Search in Google Scholar PubMed

Koddenberg, T. (2016) Handbook of Wood Chemistry and Wood Composites. J. Clean. Prod.10.1016/j.jclepro.2015.07.070Search in Google Scholar

Kononov, N. G. Chemistry of wood and its main components. Moscow State Forest University Press, Moscow, 2002.Search in Google Scholar

Kuznetsova, S. A., Aleksandrova, N. B., Kuznetsov, B. N. (2001) Composition and transformation of the main components of auto-hydrolyzed wood of pine, spruce and aspen. Chem. Sustain. Dev. 9:655–665.Search in Google Scholar

Markova, I. A., Shestakova, T. A., Butenko, O. Y., Bolshakova, N. V., Stepanova, O. P. (2008) Industrial plantations of pine and spruce. Saint-Petersburg Forestry Research Institute, St. Petersburg.Search in Google Scholar

McEwan, A., Marchi, E., Spinelli, R., Brink, M. (2020) Past, present and future of industrial plantation forestry and implication on future timber harvesting technology. J. For. Res.10.1007/s11676-019-01019-3Search in Google Scholar

Neronova, J. A. (2018) The effect of forest management measures on the structure of the annual ring of Scots pine wood (Pinus sylvestris. L.) in the long-term perspective. Saint-Petersburg State Forest Technical University.Search in Google Scholar

Nuopponen, M. (2005): Ft-IR and UV Raman Spectroscopic Studies on Thermal Modification of Scots Pine Wood and Its Extractable Compounds, Technology.Search in Google Scholar

Obolenskaya, A. V., Yelnitskaya, Z. P., Leonovich, A. A. Laboratory work on wood and cellulose chemistry. Ecology, Moscow, 1991.Search in Google Scholar

Osipov, P. S., Gavrilidi, E. A., Akim, E. L., Akim, G. L., Zorin, I. F., Ignatov, I. A., Nevolin, V. F., Pyzirev, S. S., Smetanin, V. V., Smolin, A. S., Chizhov, G. I. Technology of pulp and paper production: handbook. In 3 volumes. Volume 1. Part 1. St. Petersburg State Forest Technical Academy, St. Petersburg, 2002.Search in Google Scholar

Pekkoev, A. N. (2010). Accelerated cultivation of common pine plantations in the mid-taiga subzone of Karelia, St. Petersburg State Forest Technical University.Search in Google Scholar

Polubojarinov, O. I. (1991) Wood quality of plantation-type pine trees in Northwest European part of the USSR. In: For. For. Plant. soil Sci. Forest Technical Academy, St. Petersburg. pp. 89–95.Search in Google Scholar

Pykalainen, J., Kurttila, M. (2009): Development of forest planning in Finland: Methods and experience.Search in Google Scholar

Räisänen, T., Athanassiadis, D. (2013) Basic chemical composition of the biomass components of pine, spruce and birch, For. Refine.Search in Google Scholar

Romanov, E. M., Nureeva, T. V., Eremin, N. V. (2016) The role of planted forests in improving the productive capacity and ecological potential of Scots pine boreal forests in the Middle Volga Region. N. Z. J. For. Sci.10.1186/s40490-016-0066-ySearch in Google Scholar

Rosleskhoz. (2017) Information about the lands of the forest fund.Search in Google Scholar

Routa, J., Kilpeläinen, A., Ikonen, V.-P., Asikainen, A., Venäläinen, A., Peltola, H. (2019) Effects of intensified silviculture on timber production and its economic profitability in boreal Norway spruce and Scots pine stands under changing climatic conditions For. An Int. J. For. Res.10.1093/forestry/cpz043Search in Google Scholar

Rytter, L., Ingerslev, M., Kilpeläinen, A., Torssonen, P., Lazdina, D., Löf, M., Madsen, P., Muiste, P., Stener, L. G. (2016) Increased forest biomass production in the Nordic and Baltic countries – A review on current and future opportunities. Silva Fenn.10.14214/sf.1660Search in Google Scholar

Saarela, K. E., Harju, L., Rajander, J., Lill, J. O., Heselius, S. J., Lindroos, A., Mattsson, K. (2005) Elemental analyses of pine bark and wood in an environmental study. Sci. Total Environ.10.1016/j.scitotenv.2004.09.043Search in Google Scholar

Sable, I., Grinfelds, U., Jansons, A., Vikele, L., Irbe, I., Verovkins, A., Treimanis, A. (2012) Pine wood and fibers. BioResources.Search in Google Scholar

Savill, P., Evans, J., Auclair, D., Falck, J. Plantation Silviculture in Europe. Oxford University Press, Oxford, 1997.Search in Google Scholar

Sedjo, R. A., Botkin, D. (1997) Using Forest Plantations to Spare Natural Forests. Environ. Sci. Policy Sustain. Dev. 39(10):14–30.10.1080/00139159709604776Search in Google Scholar

Sharkov, V. I., Kuibina, N. I. Hemicellulose chemistry. Lesnaya promyslennost, Moscow, 1972.Search in Google Scholar

Shutov, I. V., Postnikov, M. V., Sergiyenko, V. G., Omelyanenko, A. Y., Podshivayev, E. E., Tovkach, L. N., Markova, I. A., Vlasov, R. V. (2007) Industrial tree plantations as the objects of forestry. Ed. Shutov, I. V. St. Petersburg State Polytechnical University, St. Petersburg.Search in Google Scholar

Sjöström, E. (1993) Wood Polysaccharides and Lignin. Wood Chem. Fundam. Appl.10.1016/B978-0-08-092589-9.50007-3Search in Google Scholar

Sjöström, E. Analytical methods in wood chemistry, pulping, and papermaking. Springer Verlag, 1998.10.1007/978-3-662-03898-7Search in Google Scholar

Smirnov, A. P., Pazukhina, G. A. (2003) Comparative Analysis of Wood Quality from High-productive Pine Stands on Drained Peat Soils. Lesn. Zhurnal (Russian For. Journal) 1:112–120.Search in Google Scholar

Sokolov, A. I., Pekkoev, A. N. (2015) Plantation growing of pine stands in the middle taiga of the North-West taiga zone of Russia, Biotechnol. state. Prospect. Dev. Mater. VIII Moscow Int. Congr. D. Mendeleev University of Chemical Technology of Russia, Moscow, 186–187.Search in Google Scholar

Sokolov, A. I., Pekkoev, A. N., Kharitonov, V. A. (2012) Results of first experiments on pine and spruce plantation growing in middle the taiga of Republic of Karelia. In: Innov. Technol. For. Proc. Second Sci. Conf. Ed. Zhigunov, A. V., Saint-Petersburg Forestry Research Institute, St. Petersburg, pp. 177–181.Search in Google Scholar

Suttie, E. D. (2001) Wood and Cellulosic Chemistry. Polym. Degrad. Stab.10.1016/S0141-3910(01)00147-1Search in Google Scholar

Usoltsev, V. A., Malenko, A. A. (2014a) Forest plantations of various initial planting densities. Message 1. Optimization aspects, group and density effects. ÈKO-POTENCIAL 3(7):23–33.Search in Google Scholar

Usoltsev, V. A., Malenko, A. A. (2014b) Forest plantations of various initial planting densities. Message 2. Analysis of experimental plantings of Scots pine stands. ÈKO-POTENCIAL 3(7):34–47.Search in Google Scholar

Volovich, P., Skrigalovskaya, V., Isaichikov, M. (2011) Plantation forestry of fastgrowth tree species. Proc. BSTU 1:128–130.Search in Google Scholar

Warman, R. D. (2014) Global wood production from natural forests has peaked. Biodivers. Conserv.10.1007/s10531-014-0633-6Search in Google Scholar

Received: 2020-06-16
Accepted: 2020-09-06
Published Online: 2020-11-18
Published in Print: 2020-11-18

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.4.2024 from https://www.degruyter.com/document/doi/10.1515/npprj-2020-0058/html
Scroll to top button