Skip to main content
Log in

Modeling the Nonlinear Deformation and Damage of Carbon-Aramid Fabric Composites in Tension

  • Published:
Mechanics of Composite Materials Aims and scope

To model the deformation of fabric polymer composite materials highly nonlinear in tension along the warp/weft threads, an analytical approach is proposed. Based on experimental data and the method of a deformable polyhedron, a tool is developed for an efficient selection of parameters for the model of a fabric composite consisting of equivalent orthogonally stacked unidirectional layers. A new version of the FARGR software module is developed, which makes it possible to design hybrid carbon-aramid fabric composites that show a significant nonlinear (pseudoplastic) mechanical behavior in tension experiments. The strain was measured by the optical (DIC) method. The failure of a carbon fiber layer occurred by fragmentation with stable delamination. In combination with aramid fabrics, such a fracture mechanism leads to the appearance of an extended pseudoplasticity plateau and to a potential insensitivity of such composites to stress concentrators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. K. Allaer, I. D. Baere, P. Lava and J. Degrieck, “On the in-plane mechanical properties of stainless steel fibre reinforced ductile composites,” Composites Sci. Technol., 100, No. 21, 34-43(2014).

    Article  CAS  Google Scholar 

  2. M. G. Callens, L. Gorbatikh, and I. Verpoest, “Ductile steel fibre composites with brittle and ductile matrices,” Composites: Part A, 61, June, 235-244 (2014).

  3. M. G. Callens, L. Gorbatikh, E. Bertels, B. Goderis, M. Smet, and I. Verpoest, “Tensile behavior of stainless steel fire/epoxy composites with modified adhesion,” Composites: Part A, 69, February, 208-218 (2015).

  4. L. Mishnaevsky, K. Branner, H. N. Petersen, J. Beauson, M. McGugan, and B. F. Serensen, “Materials for wind turbine blades: An Overview,” Materials, 10, 1285 (2017).

    Article  Google Scholar 

  5. J. D. Fuller and M. R. Wisnom, “Pseudo-ductility and damage suppression in thin ply CFRP angle-ply laminates,” Composites: Part A, 69, 64-71 (2014).

    Article  Google Scholar 

  6. J. D. Fuller, M. Jalalvand, and M. R. Wisnom, “Combining fibre rotation and fragmentation to achieve pseudoductile CFRP laminates,” Compos. Struct., 142, 155-166 (2016).

    Article  Google Scholar 

  7. H. Diao, A. Bismarck, P. Robinson, and M. R. Wisnom, “Pseudo-ductile behavior of unidirectional fibre reinforced polyamide-12 composite by intra-tow hybridization,” Proc. of ECCM 15, Venice, June, (2012).

    Google Scholar 

  8. Hayashi T. Development of new material properties by hybrid composition,” Compos. Mater.-1972.-Vol. 1.-P. 18-20.

  9. T. Hayashi, K. Koyama, A. Yamazaki, and M. Kihira, “Development of new material properties by hybrid composition,” Compos. Mater., 1, 21-25 (1972).

    Google Scholar 

  10. A. R. Bunsell and B. Harris, “Hybrid carbon and glass fibre composites,” Composites, 5, 157-64 (1974).

    Article  Google Scholar 

  11. P. W. Manders and M. G. Bader, “The strength of hybrid glass/carbon fibre composites,” J. Mater. Sci., 16, 2233-2245 (1981).

    Article  CAS  Google Scholar 

  12. Y. Swolfs, L. Gorbatikh and I. Verpoest, “Fibre hybridisation in polymer composites: a review,” Composites: Part A, 67, 181-200 (2014).

    Article  CAS  Google Scholar 

  13. M. Fotouhi, M. Jalalvand, and M. R. Wisnom, “Notch insensitive orientation-dispersed pseudo-ductile thin-ply carbon/glass hybrid laminates,” Composites: Part A, 110, 29-44 (2018).

    Article  CAS  Google Scholar 

  14. G. Czel, T. Rev, M. Jalalvand, et al., “Pseudo-ductility and reduced notch sensitivity in multi-directional all-carbon/epoxy thin-ply hybrid composites,” Composites: Part A, 104, 151-16 (2018).

    Article  CAS  Google Scholar 

  15. Y. Swolfs, I. Verpoest, and L. Gorbatikh, “Recent advances in fibre-hybrid composites: materials selection, opportunities and applications,” Int. Mater. Rev.(2018).

  16. J. H. S. Almeida, S. C. Amico, E. C. Botelho, and F. D. R. Amado, “Hybridization effect on the mechanical properties of curaua/glass fiber composites,” Composites: Part A, 55, 492-497 (2013).

    Article  CAS  Google Scholar 

  17. Y. Swolfs, I. Verpoest, and L. Gorbatikh, “Maximising the hybrid effect in unidirectional hybrid composites,” Mater. Des., 93, 39-45 (2016).

    Article  Google Scholar 

  18. J. D. Fuller and M. R. Wisnom, “Exploration of the potential for pseudo-ductility in thin ply CFRP angle-ply laminates via an analytical method,” Compos. Sci. Technol., 112, 8-15 (2015).

    Article  CAS  Google Scholar 

  19. M. Jalalvand, G. Czél, and M. R. Wisnom, “Damage analysis of pseudo-ductile thin-ply UD hybrid composites-a new analytical method,” Composites: Part A, 69, 83-93 (2015).

    Article  CAS  Google Scholar 

  20. G. Kretsis, “A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics,” Composites, 18, No. 1, 13-23 (1987).

    Article  CAS  Google Scholar 

  21. T. Hayashi, “On the improvement of mechanical properties of composites by hybrid composition,” Proc. 8th Int. Reinforced Plastics Conf., 149-152 (1972).

  22. S. B. Sapozhnikov, S. I. Cheremnykh, and A. G. Maslakova, “Prediction of deformation and biaxial strength of fiber reinforced laminates for WWFE by using micro damage mechanics,” Proc. ECCM 13, Stockholm, 2-5 June, (2008).

  23. S. B. Sapozhnikov and O. S. Buslaeva, “A prediction of fracture load of fibre reinforced plastic with arbitrary concentrator under tension,” Proc. IV Int. Conf. on Computational Plasticity, COMPLAS IV, Barcelona, 1127-1235 (1995).

  24. A. S. Kaddour, M. J. Hinton, S. Li, and P. A. Smith, “Damage prediction in polymer composites: Up-date of part (A) of the 3rd World-Wide Failure Exercise (WWFE-III),” ICCM Int. Conf. on Composite Materials, (2011).

  25. P. W. Manders and M. G. Bader, “The strength of hybrid glass/carbon fibre composites. Part 1. Failure strain enhancement and failure mode,” J. Mater. Sci., 16, No. 8, 22, 33-45 (1981).

  26. G. Czél and M. R. Wisnom, “Demonstration of pseudo-ductility in high performance glass/epoxy composites by hybridisation with thin-ply carbon prepreg,” Composites: Part A, 52, 23-30 (2013).

    Article  Google Scholar 

  27. S. B. Sapozhnikov and S. I. Cheremnykh, “The strength of fibre reinforced polymer under a complex loading,” J. Compos. Mater., 47, Nos. 20-21, 2525-2552 (2013).

    Article  Google Scholar 

  28. H. E. Daniels, “The statistical theory of the strength of bundles of threads,” Proc. Roy. Soc. Math. Phys. Eng. Sci., 183, 405-435 (1945).

    Google Scholar 

  29. S. B. Sapozhnikov and M. Y. Semashko, “Designing the structure of a pressure vessel wall made of a layered composite material with nonproportional changes in stress components,” Mech. Compos. Mater., 54, No. 5, 567-576 (2018).

    Article  Google Scholar 

  30. S. B. Sapozhnikov, Defects and Durability of the Reinforced Plastics [in Russian], Chelyabinsk: ChGTU (1994).

    Google Scholar 

  31. J. A. Nelder and R. Mead, Computer J., 7, 308313 (1965).

  32. URL: http://www.hccomposite.com/ (date of reference: 16.04.2020)

  33. URL: https://npp-termoteks.inni.info/ (date of reference: 16.04.2020)

  34. M. R. Wisnom, “Mechani cm s to create high performance pseudo-ductile composites,” IOP Conf. Ser. Materials Science and Engineering, 13901 (2010).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Leshkov.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 56, No. 5, pp. 867-880, September-October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leshkov, E.V., Sapozhnikov, S.B. Modeling the Nonlinear Deformation and Damage of Carbon-Aramid Fabric Composites in Tension. Mech Compos Mater 56, 591–600 (2020). https://doi.org/10.1007/s11029-020-09906-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09906-1

Keywords

Navigation