Skip to main content
Log in

Diffusion of Nanobubbles in fcc Aluminum

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

The existing theories of diffusion of gas-filled and empty bubbles in solids as yet do not have sufficient predictive power and require refinements that can be made using simulation. The method of the accelerated molecular dynamics simulation of the bubble drift in a pressure gradient is theoretically substantiated in this work. This method is used to calculate the diffusion coefficient of empty nanobubbles in aluminum. The theory of diffusion by means of the formation of critical terraces on the faces is supplemented in such a way that there is no contradiction with the continuous model for macroscopic dimensions. The simulation results show the key role of the formation mechanism of terraces in nanobubbles and confirm the amended theory. The inclusion of the effect of gas makes it possible to compare the simulation results with experimental data. The comparison also confirms the formation mechanism of terraces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. E. Geguzin and M. A. Krivoglaz, Migration of Macroscopic Inclusions in Solids (Metallurgiya, Moscow, 1971; Consultants Bureau, New York, 1973).

    Google Scholar 

  2. P. Goodhew and S. Tyler, Proc. R. Soc. London, Ser. A 377, 151 (1981).

    Article  ADS  Google Scholar 

  3. E. Y. Mikhlin and V. Chkuaseli, Phys. Status Solidi A 29, 331 (1975).

    Article  ADS  Google Scholar 

  4. W. Beere and G. Reynolds, Acta Metall. 20, 845 (1972).

    Article  Google Scholar 

  5. L. Willertz and P. Shewmon, Metall. Mater. Trans. B 1, 2217 (1970).

    Article  ADS  Google Scholar 

  6. E. Y. Mikhlin, Phys. Status Solidi A 56, 763 (1979).

    Article  ADS  Google Scholar 

  7. M. Veshchunov and V. Shestak, J. Nucl. Mater. 376, 174 (2008).

    Article  ADS  Google Scholar 

  8. L. Noirot, J. Nucl. Mater. 447, 166 (2014).

    Article  ADS  Google Scholar 

  9. M. E. Gulden, J. Nucl. Mater. 23, 30 (1967).

    Article  ADS  Google Scholar 

  10. C. Baker, J. Nucl. Mater. 71, 117 (1977).

    Article  ADS  Google Scholar 

  11. J. Evans and A. van Veen, J. Nucl. Mater. 168, 12 (1989).

    Article  ADS  Google Scholar 

  12. R. Barnes and D. Mazey, Proc. R. Soc. London, Ser. A 275, 47 (1963).

    Article  ADS  Google Scholar 

  13. K. Ono, S. Furuno, K. Hojou, T. Kino, K. Izui, O. Takaoka, N. Kubo, K. Mizuno, and K. Ito, J. Nucl. Mater. 191, 1269 (1992).

    Article  ADS  Google Scholar 

  14. S. Tyler and P. Goodhew, J. Nucl. Mater. 92, 201 (1980).

    Article  ADS  Google Scholar 

  15. É. Bévillon, R. Ducher, M. Barrachin, and R. Dubourg, J. Nucl. Mater. 434, 240 (2013).

    Article  ADS  Google Scholar 

  16. G. Smirnov and V. Stegailov, J. Phys.: Condens. Matter 31, 235704 (2019).

    ADS  Google Scholar 

  17. A. Karavaev, V. Dremov, and G. Ionov, J. Nucl. Mater. 468, 46 (2016).

    Article  ADS  Google Scholar 

  18. X.-Y. Liu and D. Andersson, J. Nucl. Mater. 462, 8 (2015).

    Article  ADS  Google Scholar 

  19. B. Beeler, D. Andersson, M. W. Cooper, and Y. Zhang, J. Nucl. Mater. 523, 413 (2019).

    Article  ADS  Google Scholar 

  20. D. Perez, L. Sandoval, S. Blondel, B. D. Wirth, B. P. Uberuaga, and A. F. Voter, Sci. Rep. 7, 2522 (2017).

    Article  ADS  Google Scholar 

  21. N. Gao, L. Yang, F. Gao, R. J. Kurtz, D. West, and S. Zhang, J. Phys.: Condens. Matter 29, 145201 (2017).

    ADS  Google Scholar 

  22. K. Morishita and R. Sugano, Nucl. Instrum. Methods Phys. Res., Sect. B 255, 52 (2007).

    Article  ADS  Google Scholar 

  23. D. Schwen and R. Averback, J. Nucl. Mater. 402, 116 (2010).

    Article  ADS  Google Scholar 

  24. S. Hu, C. H. Henager, Jr., H. L. Heinisch, M. Stan, M. I. Baskes, and S. M. Valone, J. Nucl. Mater. 392, 292 (2009).

    Article  ADS  Google Scholar 

  25. Y. Gao, Y. Zhang, D. Schwen, C. Jiang, C. Sun, and J. Gan, Materialia 1, 78 (2018).

    Article  Google Scholar 

  26. L. Verma, L. Noirot, and P. Maugis, J. Nucl. Mater. 528, 151874 (2020).

    Article  Google Scholar 

  27. A. Antropov, V. Ozrin, V. Stegailov, and V. Tarasov, J. Exp. Theor. Phys. 129, 103 (2019).

    Article  ADS  Google Scholar 

  28. A. Antropov and V. Stegailov, J. Nucl. Mater., 152110 (2020).

  29. M. Veshchunov, V. Ozrin, V. Shestak, V. Tarasov, R. Dubourg, and G. Nicaise, Nucl. Eng. Des. 236, 179 (2006).

    Article  Google Scholar 

  30. M. Tonks, D. Andersson, R. Devanathan, R. Dubourg, A. El-Azab, M. Freyss, F. Iglesias, K. Kulacsy, G. Pastore, S. R. Phillpot, and M. Welland, J. Nucl. Mater. 504, 300 (2018).

    Article  ADS  Google Scholar 

  31. W. Beere, Philos. Mag. 25, 189 (1972).

    Article  ADS  Google Scholar 

  32. W. Beere, J. Nucl. Mater. 45, 91 (1972).

    Article  ADS  Google Scholar 

  33. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Nauka, Moscow, 1995; Pergamon, Oxford, 1980).

    Google Scholar 

  34. W. M. Brown, P. Wang, J. S. Plimpton, and A. N. Tharrington, Comput. Phys. Commun. 182, 898 (2011).

    Article  ADS  Google Scholar 

  35. V. Stegailov, E. Dlinnova, T. Ismagilov, M. Khalilov, N. Kondratyuk, D. Makagon, A. Semenov, A. Simonov, G. Smirnov, and A. Timofeev, Int. J. High Perform. Comput. Appl. 33, 507 (2019).

    Article  Google Scholar 

  36. M. Mendelev, M. Kramer, C. A. Becker, and M. Asta, Philos. Mag. 88, 1723 (2008).

    Article  ADS  Google Scholar 

  37. R. Stumpf and M. Scheffler, Phys. Rev. B 53, 4958 (1996).

    Article  ADS  Google Scholar 

  38. A. Antropov, V. Ozrin, G. Smirnov, V. Stegailov, and V. Tarasov, J. Phys.: Conf. Ser. 1133, 012029 (2018).

    Google Scholar 

  39. W. Jäger, R. Manzke, H. Trinkaus, G. Crecelius, R. Zeller, J. Fink, and H. Bay, J. Nucl. Mater. 111, 674 (1982).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Antropov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 112, No. 5, pp. 325–331.

Funding

This work was supported by the Russian Foundation for Basic Research (project no. 18-08-01495).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antropov, A.S. Diffusion of Nanobubbles in fcc Aluminum. Jetp Lett. 112, 310–315 (2020). https://doi.org/10.1134/S002136402017004X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S002136402017004X

Navigation