Skip to main content
Log in

Optical Properties of Thermal Control Coatings after Exposure to 90 keV Electrons

  • Original Article
  • Published:
The Journal of the Astronautical Sciences Aims and scope Submit manuscript

Abstract

Thermal control paints are widely used in spacecraft industry to protect the spacecraft/satellite surfaces from the deleterious effects of the space environment. Dynamic reflectivity of spacecraft materials must be taken into account for improved space situational awareness (SSA). Additionally, a thorough characterization of each spacecraft material’s optical properties while on orbit can be used for designing of spacecraft surfaces for optimal thermal properties throughout a mission lifetime. This work presents the initial experimental results on performance of different organic and inorganic thermal control paints manufactured by AZ Technology exposed to various fluences of high energy (90 keV) electrons, designed to simulate a portion of the geosynchronous Earth orbit (GEO) space environment. In-vacuo reflectance spectroscopy was utilized to qualify and quantify radiation induced changes of optical properties in the studied coupons of thermal control paints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jaworske, D.A.: Correlation of predicted and observed optical properties of multilayer thermal control coatings. Thin Solid Films. 332, 30–33 (1998)

    Article  Google Scholar 

  2. Breuch, R.A., Marshall, K.N.: Optical solar reflector-a highly stable, low alpha sub S/epsilon spacecraft thermal control surface. J. Spacecr. Rocket. 5, 1051–1056 (1968)

    Article  Google Scholar 

  3. Drolen, B.L.: Bidirectional reflectance and specularity of twelve spacecraft thermal control materials. J. Thermophys. Heat Transf. 6, 672–679 (1992)

    Article  Google Scholar 

  4. Tachikawa, S., Ohnishi, A., Shimakawa, Y., Ochi, A., Okamoto, A., Nakamura, Y.: Development of a variable emittance radiator based on a perovskite manganese oxide. J. Thermophys. Heat Transf. 17, 264–268 (2003)

    Article  Google Scholar 

  5. Thomson M. “AstroMesh™ deployable reflectors for Ku and Ka band commercial satellites” in 20th AIAA international communication satellite systems conference and exhibit 12-15 May 2002, Montreal, Quebec, Canada, p. 2032

  6. Kleiman J., Katsir D., Shabtai K, Von Finck A., Duparre A. “Black & White Thermal Control Coatings”. https://www.acktar.com/about-us/technical-reports/black-white-thermal-control-coatings/

  7. Gilmore, D.G.: Spacecraft Thermal Control Handbook: Fundamental Technologies. Aerospace Press, USA (2002) p. 810

    Book  Google Scholar 

  8. Jaworske A. “Thermal Cycling of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites”. In 3rd International Energy Conversion Engineering Conference, Aug. 2005, p. 5589

  9. Calle C. I., Buhler C. R., Hogue M. D., Johansen M. R., Van Suetendael N. J., Chen A., Case S. O., Snyder S. J., Clements J. S., Moebus J. A., Miller J. B. “ Development of a Dust Mitigation Technology for Thermal Radiators for Lunar Exploration”. In IEEE Aerospace Conference, March 2010, pp. 1-8

  10. Choi M. “Thermal vacuum/balance test results of swift BAT with loop heat pipe thermal system”. In 2nd International Energy Conversion Engineering Conference, Jan. 2004, p. 5683

  11. Finckenor M.M., Golden J. L., Kravchenko M. “Analysis of International Space Station Vehicle Materials Exposed on Materials International Space Station Experiment from 2001 to 2011”. NASA/TP-2013–217498, 2013

  12. Jaworske D. A. “Electron Beam Exposure of Thermal Control Paints on Carbon-Carbon and Carbon-Polyimide Composites”. In AIP Conference Proceedings, vol. 813 (1), Jan. 2006, pp. 50–55

  13. Neel, C. B. “Research on the stability of thermal-control coatings for spacecraft”. In Space Technology and Science 1964, p. 603

  14. Zuby T. M., Degroh K. K., Smith D. C. “Degradation of FEP Thermal Control Materials Returned from the Hubble Space Telescope” NASA technical report 19960012199, 1995

  15. Tonon, C., Duvignacq, D., Teyssedre, G., Dinguirard, M.: Degradation of the optical properties of ZnO-based thermal control coatings in simulated space environment. Journal of Physics D: Applied Physics. Vol. 43(1), 124–131 (2001)

  16. Lucey, P.G., Hawke, B.R., Pietters, C.M., Head, J.W., Mccord, T.B.: A compositional study of the Aristarchus region of the moon using near-infrared reflectance spectroscopy. Journal of Geophysical Research: Solid Earth. 91, 344–354 (1986)

    Article  Google Scholar 

  17. Bell III, J.F., Izenber, N.I., Lucey, P.G., Clark, B.E., Peterson, C., Gaffey, M.G., Joseph, J., Carcich, B., Harch, A., Bell, M.E.: M., Warren J. “near-IR reflectance spectroscopy of 433 Eros from the NIS instrument on the NEAR mission: I. low phase angle observations”. Icarus. 155, 119–144 (2002)

    Article  Google Scholar 

  18. Szalai, Z., Kiss, K., Jakab, G., Sipos, P., Belucz, B., Nemeth, T.: The use of UV-VIS-NIR reflectance spectroscopy to identify iron minerals. Astronomische Nachrichten. 224, 940–943 (2013)

    Article  Google Scholar 

  19. Affey M.G., Clots M. A., Kelley M. S., Reed K. L. “Mineralogy of Asteroids”, in Asteroids III, 183–204. University of Arizona Press, 2002. URL http://www.lpi.usra.edu/books/AsteroidsIII/pdf/3024.pdf

  20. Abercromby K, Hamada K., Guyote M., Okada J., Barker E.S. “Remote and ground truth spectral measurement comparisons of FORMOSAT III”, in Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, USA, 2007

  21. Bedard M. D. “Using a Physics-Based Reflection Model to Study the Reddening Effect Observed in Spectrometric Measurements of Artificial Space Objects”, In Advance Maui Optical and Space Surveillance Technologies Conference, Maui, USA, 2007

  22. Seitzer P., Lederer M. M., Cowardin H., Barker E. S., Abercromby K. J. “Visible Light Spectroscopy of GEO Debris”, In Advance Maui Optical and Space Surveillance Technologies Conference, Maui, USA, 2012

  23. Chun F., Tucker R., Weld E., Tipperts R. “Spectral Measurements of Geosynchronous Satellites during Glint Season”, in Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, USA, 2015

  24. Polo M., Alenin A., Vaughn I., Lambert A. “GEO Satellite Characterization through Polarimetry Using Simultaneous Observations from Nearby Optical Sensors”, in Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, USA, 2016

  25. Engelhart D., Cooper R., Cowardin H., Maxwell J., Plis E., Ferguson D., Barton D., Schiefer S., Hoffmann R. “Space Weathering Experiments on Spacecraft Materials”, in Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, USA, 2017

  26. Cooper R. and Hoffmann R. "Jumbo Space Environment Simulation and Spacecraft Charging Chamber Characterization," Air Force Technical Report, vol. AFRL-RV-PS-TP-2015-0012, 2015. Release Number: 377ABW-2015-0424

  27. Bengston M., Maxwell J., Hoffmann R., Cooper R., Schieffer S., Ferguson D., Cowardin H., Plis E., Engelhart D. “Optical Characterization of Commonly Used Thermal Control Spacecraft Paints in a Simulated GEO Environment”, in Advanced Maui Optical and Space Surveillance Technologies Conference, Maui, USA, September 2018

  28. Plis, E.A., Engelhart, D.P., Cooper, R., Ferguson, D.C., Hoffmann, R.: Effect of environment on charge transport properties of polyimide films damaged by high-energy electron radiation. Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena. 13, 052906 (2018)

    Article  Google Scholar 

  29. "Sloan Digital Sky Survey" [Online]. Available: http://www.sdss.org/dr12/algorithms/ugrizvegasun/

  30. Jaworske D.A., Kline S. E. “Review of end-of-life thermal control coating performance” NASA report 2008. NASA/TM-2008-215173

  31. Zerlaut G.A., Harada Y, Tompkins E.M. “Ultraviolet Irradiation of White Spacecraft Coatings in Vacuum”, Thermal Radiation of Solids, San Francisco, USA, 4–6 March 1964

  32. Mikhailov, M.M., Dvoretskiy, M.I.: Kinetics of coloration of ZnO + K2SiO3 system during electron irradiation. Fizika I Khimiya Obrabotki Materialov. 2, 148–151 (1981)

    Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge support from the Air Force Office of Scientific Research, Remote Sensing and Imaging Physics Portfolio (Dr. Arje Nachmann; grant 17RVCOR414), AZ Technology for supplying materials for the study, and A. Sokolovskiy for the assistance with data acquisition process.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena A. Plis.

Ethics declarations

Conflict of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Special Topic Section: Advanced Maui Optical and Space Surveillance Technologies (AMOS 2018 & 2019)

Guest Editors: James M. Frith, Lauchie Scott, Islam Hussein

An earlier version of this article was first presented at the 19th Advanced Maui Optical and Space Surveillance Technologies Conference, held in Wailea, Maui, Hawaii, September 11-14, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plis, E.A., Engelhart, D.P., Cooper, R. et al. Optical Properties of Thermal Control Coatings after Exposure to 90 keV Electrons. J Astronaut Sci 67, 1636–1647 (2020). https://doi.org/10.1007/s40295-020-00241-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40295-020-00241-0

Keywords

Navigation