Skip to main content

Advertisement

Log in

Microstructure and properties of Al–7Si–0.6Mg alloys with different Ti contents deposited by wire arc additive manufacturing

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Numerous studies have addressed the advantages of wire arc additive manufacturing for manufacturing aluminum alloys. However, the role of Ti content in aluminum alloys has rarely been discussed. Herein, the effect of Ti content on the microstructure and properties of Al–7Si–0.6Mg alloys was studied. The alloys were deposited via wire arc additive manufacturing and were examined through optical microscopy (OM), scanning electron microscopy (SEM), and electronic universal testing. The results show that the increase of Ti content gradually promotes the increase of the secondary dendrite arm spacing and also has an increasing tendency to form pores defect in the as-deposited alloys. The change of titanium content also affects the difference between horizontal and vertical direction properties of the alloy. The alloy with a Ti content of 0.112 wt% exhibits the best comprehensive properties. There is no difference in its horizontal and vertical direction properties. The tensile strengths, yield strengths, and elongation of this alloy (T6) along the vertical and horizontal axis are 356 and 355 MPa, 307 and 308 MPa, and 8.5% and 8.0%, respectively.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Stewart SW, Martina F, Addison AC, Ding JL, Pardal G, Colegrove P. Wire + arc additive manufacturing. Mater Sci TECH-LOND. 2016;32(7):641.

    Article  Google Scholar 

  2. Wang FD, Stewart SW, Colegrove P, Antonysamy AA. Microstructure and mechanical properties of wire and arc additive manufactured Ti–6Al–4V. Metall Mater Trans A. 2013;44(2):968.

    Article  Google Scholar 

  3. Martina F, Mehnen J, Stewart SW, Colegrove P, Wang FD. Investigation of the benefits of plasma deposition for the additive layer manufacture of Ti–6Al–4V. J Mater Process Technol. 2012;212(6):1377.

    Article  CAS  Google Scholar 

  4. Ayarkwa KF, Stewart SW, Ding JL. Investigation of pulse advance cold metal transfer on aluminium wire arc additive manufacturing. Int J Rapid Manuf. 2015;5(1):44.

    Article  Google Scholar 

  5. Gu JL, Ding JL, Cong BQ, Bai J, Gu HM, Stewart SW, Zhai YC. The influence of wire properties on the quality and performance of wire + arc additive manufactured aluminium part. Adv Mater Res. 2015;1081:210.

    Article  Google Scholar 

  6. Derekar K, Lawrence J, Melton G, Addison A, Zhang X, Xu L. Influence of interpass temperature on wire arc additive manufacturing (WAAM) of aluminium alloy components. Mater Web Conf. 2019;269:1.

    Google Scholar 

  7. Zhu L, Li JL, Luo Y, Han JT, Zhang CY, Xu J, Chen D. Characteristics of metal droplet transfer in wire-arc additive manufacturing of aluminum alloy. Int J Adv Manuf Technol. 2019;99(5–8):1521.

    Google Scholar 

  8. Qi ZW, Qi BJ, Cong BQ, Sun HY, Zhao G, Ding JL. Microstructure and mechanical properties of wire plus arc additively manufactured 2024 aluminum alloy components: as-deposited and post heat-treated. J Manuf Process. 2019;40:27.

    Article  Google Scholar 

  9. Brice Craig A, Dennis Noah. Cooling rate determination in additively manufactured aluminum alloy 2219. Metall Mater Trans A. 2015;46:2304.

    Article  CAS  Google Scholar 

  10. Cong BQ, Ding JL, Stewart SW. Effect of arc mode in cold metal transfer process on porosity of additively manufactured Al–6.3%Cu alloy. Int J Adv Manuf Technol. 2015;76(9–12):1593.

    Article  Google Scholar 

  11. Wang S, Gu HM, Wang W, Li CD, Ren LL, Wang ZB, Zhai YC, Ma PH. Microstructure and mechanical properties of aluminum alloy (ZL205A) wall produced by wire arc additive manufacturing method. Rare Met Mater Eng. 2019;48(10):2910.

    Google Scholar 

  12. Horgar A, Fostervoll H, Nyhus B, Ren X, Eriksson M, Akselsen OM. Additive manufacturing using WAAM with AA5183 wire. J Mater Process Technol. 2019;259:68.

    Article  Google Scholar 

  13. Gu JL, Wang X, Bai J, Ding JL, Stewart SW, Zhai YC, Liu K. Deformation microstructures and strengthening mechanisms for the wire + arc additively manufactured Al–Mg4.5Mn alloy with inter-layer rolling. Mater Sci Eng A. 2018;712:292.

    Article  CAS  Google Scholar 

  14. Geng HB, Li JL, Xiong JT, Lin X, Zhang FS. Geometric limitation and tensile properties of wire and arc additive manufacturing 5A06 aluminum alloy parts. J Mater Eng Perform. 2017;26(2):621.

    Article  CAS  Google Scholar 

  15. Gu JL, Ding JL, Stewart SW, Gu HM, Ma PH, Zhai YC. The effect of inter-layer cold working and post-deposition heat treatment on porosity in additively manufactured aluminum alloys. J Mater Process Technol. 2016;230:26.

    Article  CAS  Google Scholar 

  16. Li CD, Gu HM, Wang W, Zhai YC, Ming Z, Wang S, Ren LL, Wang ZB. Investigation on microstructure and properties of aluminum alloy (ZL114A) by wire arc additive manufacturing (WAAM). Rare Met Mater Eng. 2019;48(10):2917.

    Google Scholar 

  17. He JW, Wang GQ, Tian CL, Ma F, Jin YC. Technical adjusting of wire arc additive manufactured ZL114A aluminum alloy. Aerosp Manuf Technol. 2018;06:35.

    Google Scholar 

  18. Ortega AG, Luis CG, Mehdi S, Moussaoui K, Segonds S, Rouquette S, Deschaux-Beaume F. Characterisation of 4043 aluminium alloy deposits obtained by wire and arc additive manufacturing using a cold metal transfer process. Sci Technol Weld Join. 2019;24(6):538.

    Article  CAS  Google Scholar 

  19. Zhang L, Zhan W, Jin F, Zhou Q. Microstructure and properties of A357 aluminium alloy treated by pulsed magnetic field. Mater Sci TECH-LOND. 2018;34(6):698.

    Article  CAS  Google Scholar 

  20. Alexopoulos ND, Pantelakis SG. Quality evaluation of A357 cast aluminum alloy specimens subjected to different artificial aging treatment. Mater Des. 2004;25(5):419.

    Article  CAS  Google Scholar 

  21. Ceschini L, Morri A, Morri A, Gamberini A, Messieri S. Correlation between ultimate tensile strength and solidification microstructure for the sand cast A357 aluminium alloy. Mater Des. 2009;30(10):4525.

    Article  CAS  Google Scholar 

  22. Xu C, Wang CY, Yang HJ, Liu ZG, Yamagata H, Ma CL. Solidification behavior and mechanical properties of Al–Si–Mg alloy with Ti addition. Mater Sci Forum. 2016;850:594.

    Article  Google Scholar 

  23. Wu YN, Zhang JF, Liao HC, Liu ZG, Yamagata H, Ma LC. Development of high performance near eutectic Al–Si–Mg alloy profile by micro alloying with Ti. J Alloys Compd. 2016;660(5):141.

    Article  CAS  Google Scholar 

  24. Ji SX, Watson D, Wang Y, White M, Gan ZY. Effect of Ti addition on mechanical properties of high pressure die cast Al–Mg–Si alloys. Mater Sci Forum. 2013;765:23.

    Article  Google Scholar 

  25. Haro-Rodríguez S, Goytia-Reyes RE, Dwivedi DK, Baltazar-Hernández VH, Flores-Zúñiga H, Pérez-Lópezc MJ. On influence of Ti and Sr on microstructure, mechanical properties and quality index of cast eutectic Al–Si–Mg alloy. Mater Des. 2011;32(4):1865.

    Article  Google Scholar 

  26. Zeren M, Karakulak E. Influence of Ti addition on the microstructure and hardness properties of near-eutectic Al–Si alloys. J Alloys Compd. 2008;450(1–2):255.

    Article  CAS  Google Scholar 

  27. Song MS, Liu ZX, Li JW, Song TF, Wang MX, Xie JP, Weng YG. Effect of titanium alloying manner and titanium content on microstructure and mechanical properties of A356 alloys. Chin J Nonferrous Met. 2004;14(10):1729.

    CAS  Google Scholar 

  28. Chen R, Xu QY, Jia ZN, Liu BC. Precipitation behavior and hardening effects of Si-containing dispersoids in Al–7Si–Mg alloy during solution treatment. Mater Des. 2016;90(1):1059.

    Article  CAS  Google Scholar 

  29. Shao GS, Shen NF. Effect of Ti on rapid solidification and microstructure of melt-spun Al–Si alloy ribbon. Acta Metall Sin. 1992;28(2):A78.

    CAS  Google Scholar 

  30. Huang LY, Yan MS. Gases in non-ferrous metals and their alloys. Beijing: Metallurgical Industry Press; 1989. 32.

    Google Scholar 

  31. Cong BQ, Ouyang RJ, Qi BJ, Ding JL. Influence of cold metal transfer process and its heat input on weld bead geometry and porosity of aluminum–copper alloy welds. Rare Met Mater Eng. 2016;45(3):0606.

    Article  CAS  Google Scholar 

  32. Anyalebechi PN. Analysis and thermodynamic prediction of hydrogen solution in solid and liquid multicomponent aluminum alloys. In: TMS Conference, San Antonio; 1998. 185.

  33. Ren LL, Gu HM, Wang W, Wang S, Li CD, Wang ZB, Zhai YC, Ma PH. Effects of interpass cooling on material properties of wire arc additive manufactured Al–6.3Mg alloy. 3D Print Addit Manuf. 2019;6:344.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key R&D Program of China (No. 2018YFB1106300-5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui-Min Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CD., Gu, HM., Wang, W. et al. Microstructure and properties of Al–7Si–0.6Mg alloys with different Ti contents deposited by wire arc additive manufacturing. Rare Met. 40, 2530–2537 (2021). https://doi.org/10.1007/s12598-020-01603-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01603-1

Keywords

Navigation