Skip to main content
Log in

Bioactivity-Oriented Purification of Polyphenols from Cinnamomum cassia Presl. with Anti-Proliferation Effects on Colorectal Cancer Cells

  • Original Paper
  • Published:
Plant Foods for Human Nutrition Aims and scope Submit manuscript

Abstract

Cinnamomum cassia Presl. (CCP) is a popular natural spice possessing various pharmacological properties. We obtained polyphenol-rich fraction (CCP-P) from CCP by bioactivity-oriented purification method and evaluated its Wnt signaling inhibition activity. Firstly, the phenolic components were identified as the main bioactive compounds with anti-colorectal cancer activity. Then, we compared the anti-colorectal cancer activity of CCP extract obtained from different solvent by cell morphology alteration and EdU assay. Ethanol extract showed higher antiproliferative activity compared to water extract on HCT116 cells, with proliferating cells reducing to 41.12 and 21.83% at 156.00 μg GAE/mL, respectively. Next, separation and enrichment of polyphenols from ethanol extract was performed on AB-8 macroporous resins under optimal conditions. Further evaluation of the CCP-P bioactivity revealed that it exerted more potent antiproliferative activity on RKO and HCT116 cells, showing higher selectivity for Wnt-dependent colorectal cancer cells (CRCs). Ten major polyphenols were identified in the CCP-P by UPLC-ESI-MS/MS. In summary, this study presents evidence that CCP-derived polyphenols are promising potential candidates as functional food ingredients against CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

All data and models generated or used during the study appear in the submitted article.

Abbreviations

BV:

Bed volume

CCP:

Cinnamomum cassia Presl

CCP-P:

Cinnamomum cassia Presl. polyphenols rich faction

CRC:

Colorectal cancer

CRCs:

Colorectal cancer cells

GAE:

Gallic acid equivalents

MTT:

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

TPC:

Total phenolic content

Wnt:

Wingless / Integrated

References

  1. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics, 2012. Ca-Cancer J Clin 65(2):87–108. https://doi.org/10.3322/caac.21262

    Article  PubMed  Google Scholar 

  2. Giles RH, Van Es JH, Clevers H (2003) Caught up in a Wnt storm: Wnt signaling in cancer. Bba-Rev Cancer 1653(1):1–24. https://doi.org/10.1016/S0304-419X(03)00005-2

    Article  CAS  Google Scholar 

  3. Anastas JN, Moon RT (2012) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26. https://doi.org/10.1038/nrc3419

    Article  CAS  Google Scholar 

  4. Majewska M, Lewandowska U (2018) The chemopreventive and anticancer potential against colorectal cancer of polyphenol-rich fruit extracts. Food Rev Int 34(4):390–409. https://doi.org/10.1080/87559129.2017.1307388

    Article  CAS  Google Scholar 

  5. Park CH, Chang JY, Hahm ER, Park S, Kim H-K, Yang CH (2005) Quercetin, a potent inhibitor against β-catenin/Tcf signaling in SW480 colon cancer cells. Biochem Bioph Res Co 328(1):227–234. https://doi.org/10.1016/j.bbrc.2004.12.151

    Article  CAS  Google Scholar 

  6. Lin GM, Lin HY, Hsu CY, Chang ST (2016) Structural characterization and bioactivity of proanthocyanidins from indigenous cinnamon (Cinnamomum osmophloeum). J Sci Food Agric 96(14):4749–4759. https://doi.org/10.1002/jsfa.7802

    Article  CAS  PubMed  Google Scholar 

  7. Chua MT, Tung YT, Chang ST (2008) Antioxidant activities of ethanolic extracts from the twigs of Cinnamomum osmophloeum. Bioresour Technol 99(6):1918–1925. https://doi.org/10.1016/j.biortech.2007.03.020

    Article  CAS  PubMed  Google Scholar 

  8. Tung YT, Chua MT, Wang SY, Chang ST (2008) Anti-inflammation activities of essential oil and its constituents from indigenous cinnamon (Cinnamomum osmophloeum) twigs. Bioresour Technol 99(9):3908–3913. https://doi.org/10.1016/j.biortech.2007.07.050

    Article  CAS  PubMed  Google Scholar 

  9. Yeh RY, Shiu YL, Shei SC, Cheng SC, Huang SY, Lin JC, Liu CH (2009) Evaluation of the antibacterial activity of leaf and twig extracts of stout camphor tree, Cinnamomum kanehirae, and the effects on immunity and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immun 27(1):26–32. https://doi.org/10.1016/j.fsi.2008.11.008

    Article  Google Scholar 

  10. Zhang C, Fan L, Fan S, Wang J, Yu L (2019) Cinnamomum cassia Presl: a review of its traditional uses, Phytochemistry, pharmacology and toxicology. Molecules 24(19):3473. https://doi.org/10.3390/molecules24193473

    Article  CAS  PubMed Central  Google Scholar 

  11. Giovinazzo G, Grieco F (2015) Functional properties of grape and wine polyphenols. Plant Foods Hum Nutr 70(4):454–462. https://doi.org/10.1007/s11130-015-0518-1

    Article  CAS  PubMed  Google Scholar 

  12. Wang W, Liu H, Wang S, Hao X, Li L (2011) A diterpenoid derivative 15-oxospiramilactone inhibits Wnt/β-catenin signaling and colon cancer cell tumorigenesis. Cell Res 21(5):730–740. https://doi.org/10.1038/cr.2011.30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Bolling BW, Chen YY, Chen CYO (2013) Contributions of phenolics and added vitamin C to the antioxidant capacity of pomegranate and grape juices: synergism and antagonism among constituents. Int J Food Sci Technol 48(12):2650–2658. https://doi.org/10.1111/ijfs.12261

    Article  CAS  Google Scholar 

  14. Ayaz M, Junaid M, Ullah F, Sadiq A, Subhan F, Khan MA, Ahmad W, Ali G, Imran M, Ahmad S (2016) Molecularly characterized solvent extracts and saponins from Polygonum hydropiper L. show high anti-angiogenic, anti-tumor, brine shrimp, and fibroblast NIH/3T3 cell line cytotoxicity. Front Pharmacol 7:74. https://doi.org/10.3389/fphar.2016.00074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li J, Chase HA (2010) Development of adsorptive (non-ionic) macroporous resins and their uses in the purification of pharmacologically-active natural products from plant sources. Nat Prod Rep 27(10):1493–1510. https://doi.org/10.1039/C0NP00015A

    Article  CAS  PubMed  Google Scholar 

  16. Zhao Z, Dong L, Wu Y, Lin F (2011) Preliminary separation and purification of rutin and quercetin from Euonymus alatus (Thunb.) Siebold extracts by macroporous resins. Food Bioprod Process 89(4):266–272. https://doi.org/10.1016/j.fbp.2010.11.001

    Article  CAS  Google Scholar 

  17. Hashidoko Y, Tahara S, Mizutani J (1986) New complex isoflavones in the roots of yellow lupin (Lupinus luteus L., cv. Barpine). Agric Biol Chem 50(7):1797–1807. https://doi.org/10.1271/bbb1961.50.1797

    Article  CAS  Google Scholar 

  18. Li J, Jiang H, Shi R (2009) A new acylated quercetin glycoside from the leaves of Stevia rebaudiana Bertoni. Nat Prod Res 23(15):1378–1383. https://doi.org/10.1080/14786410802447294

    Article  CAS  PubMed  Google Scholar 

  19. Lommen A, Godejohann M, Venema D, Hollman P, Spraul M (2000) Application of directly coupled HPLC− NMR− MS to the identification and confirmation of quercetin glycosides and phloretin glycosides in apple peel. Anal Chem 72(8):1793–1797. https://doi.org/10.1021/ac9912303

    Article  CAS  PubMed  Google Scholar 

  20. Gaucher M, de Bernonville TD, Guyot S, Dat JF, Brisset M-N (2013) Same ammo, different weapons: enzymatic extracts from two apple genotypes with contrasted susceptibilities to fire blight (Erwinia amylovora) differentially convert phloridzin and phloretin in vitro. Plant Physiol Biochem 72:178–189. https://doi.org/10.1016/j.plaphy.2013.03.012

    Article  CAS  PubMed  Google Scholar 

  21. Imai T, Inoue S, Ohdaira N, Matsushita Y, Suzuki R, Sakurai M, de Jesus JMH, Ozaki SK, Finger Z, Fukushima K (2008) Heartwood extractives from the Amazonian trees Dipteryx odorata, Hymenaea courbaril, and Astronium lecointei and their antioxidant activities. J Wood Sci 54(6):470–475. https://doi.org/10.1007/s10086-008-0975-3

    Article  CAS  Google Scholar 

  22. Callemien D, Collin S (2008) Use of RP-HPLC-ESI (−)-MS/MS to differentiate various proanthocyanidin isomers in lager beer extracts. J Am Soc Brew Chem 66(2):109–115. https://doi.org/10.1094/ASBCJ-2008-0215-01

    Article  CAS  Google Scholar 

  23. Yankep E, Fomum ZT, Bisrat D, Dagne E, Hellwig V, Steglich W (1998) O-Geranylated isoflavones and a3-phenylcoumarin from Millettia griffoniana. Phytochemistry 49(8):2521–2523. https://doi.org/10.1016/S0031-9422(98)00392-6

    Article  CAS  Google Scholar 

  24. Kamnaing P, Free SNF, Nkengfack AE, Folefoc G, Fomum ZT (1999) An isoflavan-quinone and a flavonol from Millettia laurentii. Phytochemistry 51(6):829–832. https://doi.org/10.1016/S0031-9422(99)00043-6

    Article  CAS  Google Scholar 

  25. Kumar K, Issac A, Ninan E, Kuttan R, Maliakel B (2014) Enhanced anti-diabetic activity of polyphenol-rich de-coumarinated extracts of Cinnamomum cassia. J Funct Foods 10:54–64. https://doi.org/10.1016/j.jff.2014.05.008

    Article  CAS  Google Scholar 

  26. Vardamides J, Azebaze A, Nkengfack A, Van Heerden F, Fomum Z, Ngando T, Conrad J, Vogler B, Kraus W (2003) Scaphopetalone and scaphopetalumate, a lignan and a triterpene ester from Scaphopetalum thonneri. Phytochemistry 62(4):647–650. https://doi.org/10.1016/S0031-9422(02)00616-7

    Article  CAS  PubMed  Google Scholar 

  27. Hope C, Planutis K, Planutiene M, Moyer MP, Johal KS, Woo J, Santoso C, Hanson JA, Holcombe RF (2008) Low concentrations of resveratrol inhibit Wnt signal throughput in colon-derived cells: implications for colon cancer prevention. Mol Nutr Food Res 52(S1):S52–S61. https://doi.org/10.1002/mnfr.200700448

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fuentes RG, Arai MA, Ishibashi M (2015) Natural compounds with Wnt signal modulating activity. Nat Prod Rep 32(12):1622–1628. https://doi.org/10.1039/c5np00074b

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

National Natural Science Foundation of China (No. 31671804), the National Key R&D Program of China (2018YFD0901101) and Research and Development Program in Key Areas of Guangdong Province (2019B020210002).

Author information

Authors and Affiliations

Authors

Contributions

Li Gao performed purification, cell culture and cell experiments and written the manuscript. Na Gou performed extraction and EdU assay. Erdong Yuan revised the manuscript. Jiaoyan Ren designed experiment.

Corresponding author

Correspondence to Jiaoyan Ren.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1316 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, L., Gou, N., Yuan, E. et al. Bioactivity-Oriented Purification of Polyphenols from Cinnamomum cassia Presl. with Anti-Proliferation Effects on Colorectal Cancer Cells. Plant Foods Hum Nutr 75, 561–568 (2020). https://doi.org/10.1007/s11130-020-00846-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11130-020-00846-8

Keywords

Navigation