Skip to main content
Log in

Baseline sensitivity of Sclerotinia sclerotiorum to metconazole and the analysis of cross-resistance with carbendazim, dimethachlone, boscalid, fluazinam, and fludioxonil

  • Original Article
  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Sclerotinia stem rot, caused by Sclerotinia sclerotiorum, is a devastating fungal disease in oilseed rape. Chemical control with fungicides is the primary method of controlling this disease. Metconazole is a demethylation inhibitor fungicide that has high activity against mycelial growth of phytopathogenic fungi. In this study, 119 isolates of S. sclerotiorum were collected from oilseed rape fields in different regions of Henan Province, China, in 2015 and 2016 prior to exposure to metconazole. The sensitivities of the S. sclerotiorum isolates to a range of concentrations of metconazole were determined based on mycelial growth inhibition in 90 cm Petri-dishes containing Potato dextrose Agar to which the fungicide was added. The 50% inhibition of mycelial growth (EC50) values of the S. sclerotiorum population to metconazole ranged from 0.0469 to 0.3912 µg mL− 1 and the mean EC50 value was 0.1875 ± 0.0058 µg mL− 1 (mean ± standard error). The frequency distribution range curve was unimodal with a narrow range. Spearman’s rho (ρ) for the log10 of the EC50 values of 22 isolates of S. sclerotiorum between metconazole and carbendazim, dimethachlone, boscalid, fluazinam, and fludioxonil showed that there was no cross-resistance between metconazole and the other test fungicides. The results from this study provide important information for the control of Sclerotinia stem rot and sensitivity monitoring of S. sclerotiorum to metconazole in this area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abawi, G. S., & Grogan, R. G. (1979). Epidemiology of diseases caused by Sclerotinia species. Phytopathology, 69, 899–904.

    Article  Google Scholar 

  • Ajitomi, A., Takushi, T., Ooshiro, A., Yamashiro, M., & Taba, S. (2017). First report of sclerotinia rot of mango caused by Sclerotinia sclerotiorum in Japan. Journal of General Plant Pathology, 84, 1–3.

    Google Scholar 

  • Anema, B. P., Bouwman, J. J., Komyoji, T., & Suzuki, K. (1992). Fluazinam - a novel fungicide for use against Phytophthora-infestans in potatoes. Brighton Crop Protection Conference: Pests and Diseases, 663-668.

  • Avenot, H. F., Solorio, C., Morgan, D. P., & Michailides, T. J. (2016). Sensitivity and cross-resistance patterns to demethylation-inhibiting fungicides in California populations of Alternaria alternata pathogenic on pistachio. Crop Protection, 88, 72–78.

    Article  CAS  Google Scholar 

  • Boersma, S. J., Depuydt, D. J., Vyn, R. J., & Gillard, C. L. (2020). Fungicide efficacy for control of anthracnose of dry bean in Ontario. Crop Protection, 127, 104979.

    Article  CAS  Google Scholar 

  • Duan, Y. B., Tao, X., Zhao, H. H., Xiao, X. M., Li, M. X., Wang, J. X., & Zhou, M. G. (2019). Activity of demethylation inhibitor fungicide metconazole on Chinese Fusarium graminearum species complex and its application in carbendazim-resistance management of Fusarium Head Blight in wheat. Plant Disease, 103, 929–937.

    Article  CAS  PubMed  Google Scholar 

  • Duan, Y. B., Yang, Y., Wang, J. X., Liu, C. C., He, L. L., & Zhou, M. G. (2015). Development and application of loop-mediated isothermal amplification for detecting the highly benzimidazole-resistant isolates in Sclerotinia sclerotiorum. Scientific Reports, 5, 17278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furukawa, K., Randhawa, A., Kaur, H., Mondal, A. K., & Hohmann, S. (2012). Fungal fludioxonil sensitivity is diminished by a constitutively active form of the group III histidine kinase. FEBS Letters, 586, 2417–2422.

    Article  CAS  PubMed  Google Scholar 

  • Hu, S. M., Zhang, J., Zhang, Y. C., He, S., & Zhu, F. X. (2018). Baseline sensitivity and toxic actions of boscalid against sclerotinia sclerotiorum. Crop Protection, 110, 83–90.

    Article  CAS  Google Scholar 

  • Kuang, J., Hou, Y. P., Wang, J. X., & Zhou, M. G. (2011). Sensitivity of Sclerotinia sclerotiorum to fludioxonil: in vitro determination of baseline sensitivity and resistance risk. Crop Protection, 30, 876–882.

    Article  CAS  Google Scholar 

  • Kumazawa, S., Ito, A., Saishoji, T., & Chuman, H. (2000). Development of new fungicides, ipconazole and metconazole. Journal of Pesticide Science, 25, 321–331.

    Article  CAS  Google Scholar 

  • Leroux, P., Fritz, R., Debieu, D., & Albertini, C. (2002). Mechanisms of resistance to fungicides in field strains of Botrytis cinerea. Pest Management Science, 58, 876–888.

    Article  CAS  PubMed  Google Scholar 

  • Leroux, P., Gredt, M., Leroch, M., & Walker, A. S. (2010). Exploring mechanisms of resistance to respiratory inhibitors in field strains of Botrytis cinerea, the causal agent of gray mold. Applied and Environmental Microbiology, 76, 6615–6630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lew, R. R. (2010). Turgor and net ion flux responses to activation of the osmotic MAP kinase cascade by fludioxonil in the filamentous fungus Neurospora crassa. Fungal Genetics and Biology, 47, 721–726.

    Article  CAS  PubMed  Google Scholar 

  • Li, J. L., Kang, T. H., Talab, K. M. A., Zhu, F. X., & Li, J. H. (2017). Molecular and biochemical characterization of dimethachlone resistant isolates of Sclerotinia sclerotiorum. Pesticide Biochemistry and Physiology, 138, 15–21.

    Article  CAS  PubMed  Google Scholar 

  • Liang, H. J., Di, Y. L., Li, J. L., & Zhu, F. X. (2015). Baseline sensitivity and control efficacy of fluazinam against Sclerotinia sclerotiorum. European Journal of Plant Pathology, 142, 691–699.

    Article  CAS  Google Scholar 

  • Liu, S. M., Che, Z. P., & Chen, G. Q. (2016). Multiple-fungicide resistance to carbendazim, diethofencarb, procymidone, and pyrimethanil in field isolates of Botrytis cinerea from tomato in Henan Province, China. Crop Protection, 84, 56–61.

    Article  CAS  Google Scholar 

  • Liu, S. M., Duan, Y. B., Ge, C. Y., Chen, C. J., & Zhou, M. G. (2013). Functional analysis of the β2-tubulin gene of Fusarium graminearum and the β-tubulin gene of Botrytis cinerea by homologous replacement. Pest Management Science, 69, 582–588.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S. M., Fu, L. Y., Chen, J. P., Wang, S., Jiang, J., Che, Z. P., Tian, Y. E., & Chen, G. Q. (2019b). Carbendazim resistance of Fusarium graminearum from Henan wheat. Plant Disease, 103, 2536–2540.

    Article  CAS  PubMed  Google Scholar 

  • Liu, S. M., Fu, L. Y., Chen, J. P., Wang, S., Jiang, J., Zhang, Y., Che, Z. P., Tian, Y. E., & Chen, G. Q. (2019c). Baseline sensitivity of Botrytis cinerea to fluazinam and cross-resistance. Journal of Phytopathology, 167, 344–350.

    Article  CAS  Google Scholar 

  • Liu, S. M., Fu, L. Y., Hai, F., Jiang, J., Che, Z. P., Tian, Y., & Chen, G. (2018a). Sensitivity to boscalid in field isolates of Sclerotinia sclerotiorum from rapeseed in Henan Province, China. Journal of Phytopathology, 166, 227–232.

    Article  CAS  Google Scholar 

  • Liu, S. M., Hai, F., & Jiang, J. (2017). Sensitivity to fludioxonil of Botrytis cinerea isolates from tomato in Henan Province of China and characterizations of fludioxonil-resistant mutants. Journal of Phytopathology, 165, 98–104.

    Article  CAS  Google Scholar 

  • Liu, S. M., Jiang, J., Che, Z. P., Tian, Y. E., & Chen, G. Q. (2019a). Baseline sensitivity and control efficacy of fluazinam against Sclerotinia sclerotiorum in Henan Province, China. Journal of Phytopathology, 167, 75–81.

    CAS  Google Scholar 

  • Liu, S. M., Liu, J. L., Fu, L. Y., Chen, J. P., Wang, S., Jiang, J., Che, Z. P., Tian, Y. E., & Chen, G. Q. (2020). Baseline sensitivity of Fusarium graminearum from wheat fields in Henan, China, to metconazole and analysis of cross resistance with carbendazim and phenamacril. Journal of Phytopathology, 168, 156–161.

    Article  CAS  Google Scholar 

  • Liu, S. M., Zhang, Y., Jiang, J., Che, Z. P., Tian, Y. E., & Chen, G. Q. (2018b). Carbendazim resistance and dimethachlone sensitivity of field isolates of Sclerotinia sclerotiorum from oilseed rape in Henan Province, China. Journal of Phytopathology, 166, 701–708.

    Article  CAS  Google Scholar 

  • Ma, H. X., Chen, Y., Wang, J. X., Yu, W. Y., Tang, Z. H., Chen, C. J., & Zhou, M. G. (2009). Activity of carbendazim, dimethachlon, iprodione, procymidone and boscalid against sclerotinia stem rot in Jiangsu Province of China. Phytoparasitica, 37, 421–429.

    Article  CAS  Google Scholar 

  • Matheron, M. E., & Porchas, M. (2004). Activity of boscalid, fenhexamid, fluazinam, fludioxonil, and vinclozolin on growth of Sclerotinia minor and S. sclerotiorum and development of lettuce drop. Plant Disease, 88, 665–668.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, J. B., Huang, T. T., Xu, J. Q., Bi, C. W., Chen, C. J., & Zhou, M. G. (2012). β-tubulins in Gibberella zeae: their characterization and contribution to carbendazim resistance. Pest Management Science, 68, 1191–1198.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, J. B., Xu, J. Q., Yu, J. J., Bi, C. W., & Zhou, M. G. (2011). Localisation of the benzimidazole fungicide binding site of Gibberella zeae β2-tubulin studied by site-directed mutagenesis. Pest Management Science, 67, 191–198.

    Article  CAS  PubMed  Google Scholar 

  • Spolti, P., Jorge, B. C. D., & Del Ponte, E. M. (2012). Sensitivity of Fusarium graminearum causing head blight of wheat in Brazil to tebuconazole and metconazole fungicides. Tropical Plant Pathology, 37, 419–423.

    Article  Google Scholar 

  • Taher, K., Graf, S., Fakhfakh, M. M., Salah, H. B. H., Yahyaoui, A., Rezgui, S., Nasraoui, B., & Stammler, G. (2014). Sensitivity of Zymoseptoria tritici isolates from Tunisia to pyraclostrobin, fluxapyroxad, epoxiconazole, metconazole, prochloraz and tebuconazole. Journal of Phytopathology, 162, 442–448.

    Article  CAS  Google Scholar 

  • Tateishi, H., Miyake, T., Mori, M., Kimura, R., Sakuma, Y., & Saishoji, T. (2010). Sensitivity of Japanese Fusarium graminearum species complex isolates to metconazole. Journal of Pesticide Science, 35, 169–172.

    Article  CAS  Google Scholar 

  • Taylor, A., Coventry, E., Handy, C., West, J. S., & Clarkson, J. P. (2018). Inoculum potential of Sclerotinia sclerotiorum sclerotia depends on isolate and host plant. Plant Pathology, 67, 1286–1295.

    Article  CAS  Google Scholar 

  • Twizeyimana, M., & Hartman, G. L. (2017). Sensitivity of Phakopsora pachyrhizi isolates to fungicides and reduction of fungal infection based on fungicide and timing of application. Plant Disease, 101, 121–128.

    Article  CAS  PubMed  Google Scholar 

  • Vitoratos, A. G. (2014). Mode of action and genetic analysis of resistance to fluazinam in Ustilago maydis. Journal of Phytopathology, 162, 737–746.

    Article  CAS  Google Scholar 

  • Wang, J. X., Ma, H. X., Chen, Y., Zhu, X. F., Yu, W. Y., Tang, Z. H., Chen, C. J., & Zhou, M. G. (2009). Sensitivity of Sclerotinia sclerotiorum from oilseed crops to boscalid in Jiangsu Province of China. Crop Protection, 28, 882–886.

    Article  CAS  Google Scholar 

  • Wang, Y., Duan, Y. B., & Zhou, M. G. (2015). Molecular and biochemical characterization of boscalid resistance in laboratory mutants of Sclerotinia sclerotiorum. Plant Pathology, 64, 101–108.

    Article  CAS  Google Scholar 

  • Wang, Y., Duan, Y. B., & Zhou, M. G. (2016). Baseline sensitivity and efficacy of fluazinam in controlling sclerotinia stem rot of rapeseed. European Journal of Plant Pathology, 144, 337–343.

    Article  CAS  Google Scholar 

  • Wang, Y., Hou, Y. P., Chen, C. J., & Zhou, M. G. (2014). Detection of resistance in Sclerotinia sclerotiorum to carbendazim and dimethachlon in Jiangsu Province of China. Australasian Plant Pathology, 43, 307–312.

    Article  Google Scholar 

  • Weems, J. D., & Bradley, C. A. (2017). Sensitivity of Exserohilum turcicum to demethylation inhibitor fungicides. Crop Protection, 99, 85–92.

    Article  CAS  Google Scholar 

  • Xu, D., Pan, Y., Zhang, H., Li, X., Dai, Y., Cao, S., & Gao, Z. (2015). Detection and characterization of carbendazim resistance in Sclerotinia sclerotiorum isolates from oilseed rape in Anhui Province of China. Genetics and Molecular Research, 14, 16627–16638.

    Article  CAS  PubMed  Google Scholar 

  • Zhou, F., Zhang, X. L., Li, J. L., & Zhu, F. X. (2014). Dimethachlon resistance in Sclerotinia sclerotiorum in China. Plant Disease, 98, 1221–1226.

    Article  CAS  PubMed  Google Scholar 

  • Zhu, Z. Q., Zhou, F., Li, J. L., Zhu, F. X., & Ma, H. J. (2016). Carbendazim resistance in field isolates of Sclerotinia sclerotiorum in China and its management. Crop Protection, 81, 115–121.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was sponsored by the National Natural Science Foundation of China (31772204), the Zhongyuan Thousand Talents Program (ZYQR201912157), the Program for Science & Technology Innovation Talents in Universities of Henan Province (20HASTIT033), and the Young Teacher Funding Program of the Henan Higher School (2018GGJS051).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shengming Liu or Jia Jiang.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Fu, L., Chen, J. et al. Baseline sensitivity of Sclerotinia sclerotiorum to metconazole and the analysis of cross-resistance with carbendazim, dimethachlone, boscalid, fluazinam, and fludioxonil. Phytoparasitica 49, 123–130 (2021). https://doi.org/10.1007/s12600-020-00867-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-020-00867-8

Keywords

Navigation