Skip to main content
Log in

Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Studies on the interactions between astrocytes and neurons in the hypothalamo-neurohypophysial system have significantly facilitated our understanding of the regulation of neural activities. This has been exemplified in the interactions between astrocytes and magnocellular neuroendocrine cells (MNCs) in the supraoptic nucleus (SON), specifically during osmotic stimulation and lactation. In response to changes in neurochemical environment in the SON, astrocytic morphology and functions change significantly, which further modulates MNC activity and the secretion of vasopressin and oxytocin. In osmotic regulation, short-term dehydration or water overload causes transient retraction or expansion of astrocytic processes, which increases or decreases the activity of SON neurons, respectively. Prolonged osmotic stimulation causes adaptive change in astrocytic plasticity in the SON, which allows osmosensory neurons to reserve osmosensitivity at new levels. During lactation, changes in neurochemical environment cause retraction of astrocytic processes around oxytocin neurons, which increases MNC’s ability to secrete oxytocin. During suckling by a baby/pup, astrocytic processes in the mother/dams exhibit alternative retraction and expansion around oxytocin neurons, which mirrors intermittently synchronized activation of oxytocin neurons and the post-excitation inhibition, respectively. The morphological and functional plasticities of astrocytes depend on a series of cellular events involving glial fibrillary acidic protein, aquaporin 4, volume regulated anion channels, transporters and other astrocytic functional molecules. This review further explores mechanisms underlying astroglial regulation of the neuroendocrine neuronal activities in acute processes based on the knowledge from studies on the SON.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

www.pubmed.gov

References

  1. Hou D, Jin F, Li J, Lian J, Liu M, Liu X, Xu Y, Zhang C, Zhao C, Jia S, Jiao R, Liu XY, Wang X, Zhang Y, Wang Y-F (2016) Model roles of the hypothalamo-neurohypophysial system in neuroscience study. Biochem Pharmacol (Los Angel) 5:211

    Article  CAS  Google Scholar 

  2. Hatton GI (2002) Glial-neuronal interactions in the mammalian brain. Adv Physiol Educ 26:225–237

    Article  PubMed  Google Scholar 

  3. Theodosis DT, Poulain DA, Oliet SH (2008) Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol Rev 88:983–1008

    Article  CAS  PubMed  Google Scholar 

  4. Wang YF, Hatton GI (2009) Astrocytic plasticity and patterned oxytocin neuronal activity: dynamic interactions. J Neurosci 29:1743–1754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yuan H, Gao B, Duan L, Jiang S, Cao R, Xiong YF, Rao ZR (2010) Acute hyperosmotic stimulus-induced Fos expression in neurons depends on activation of astrocytes in the supraoptic nucleus of rats. J Neurosci Res 88:1364–1373

    CAS  PubMed  Google Scholar 

  6. Wang YF, Sun MY, Hou Q, Hamilton KA (2013) GABAergic inhibition through synergistic astrocytic neuronal interaction transiently decreases vasopressin neuronal activity during hypoosmotic challenge. Eur J Neurosci 37:1260–1269

    Article  PubMed  PubMed Central  Google Scholar 

  7. Xiong Y, Liu R, Xu Y, Duan L, Cao R, Tu L, Li Z, Zhao G, Rao Z (2011) Effects of vagotomy, splanchnic nerve lesion, and fluorocitrate on the transmission of acute hyperosmotic stress signals to the supraoptic nucleus. J Neurosci Res 89:256–266

    Article  CAS  PubMed  Google Scholar 

  8. Perlmutter LS, Tweedle CD, Hatton GI (1985) Neuronal/glial plasticity in the supraoptic dendritic zone in response to acute and chronic dehydration. Brain Res 361:225–232

    Article  CAS  PubMed  Google Scholar 

  9. Choe KY, Prager-Khoutorsky M, Farmer WT, Murai KK, Bourque CW (2016) Effects of salt loading on the morphology of astrocytes in the ventral Glia limitans of the rat supraoptic nucleus. J Neuroendocrinol 28

  10. Elgot A, El Hiba O, Gamrani H (2012) Structural and neurochemical plasticity in both supraoptic and paraventricular nuclei of hypothalamus of a desert rodent Meriones shawi after a severe dehydration versus opposite treatment by rehydration: GFAP and vasopressin immunohistochemical study. Neurosci Lett 515:55–60

    Article  CAS  PubMed  Google Scholar 

  11. Bobak JB, Salm AK (1996) Plasticity of astrocytes of the ventral glial limitans subjacent to the supraoptic nucleus. J Comp Neurol 376:188–197

    Article  CAS  PubMed  Google Scholar 

  12. Heimfarth L, da Silva FF, Pierozan P, Loureiro SO, Mingori MR, Moreira JCF, da Rocha JBT, Pessoa-Pureur R (2016) Calcium signaling mechanisms disrupt the cytoskeleton of primary astrocytes and neurons exposed to diphenylditelluride. Biochim Biophys Acta 1860:2510–2520

    Article  CAS  PubMed  Google Scholar 

  13. Kim YB, Kim WB, Jung WW, Jin X, Kim YS, Kim B, Han HC, Block GD, Colwell CS, Kim YI (2018) Excitatory GABAergic action and increased vasopressin synthesis in hypothalamic magnocellular neurosecretory cells underlie the high plasma level of vasopressin in diabetic rats. Diabetes 67:486–495

    Article  CAS  PubMed  Google Scholar 

  14. Wang Y-F, Liu L-X, Yang H-P (2011) Neurophysiological involvement in hypervolemic hyponatremia-evoked by hypersecretion of vasopressin. Transl Biomed 2:14

    CAS  Google Scholar 

  15. Zhang B, Glasgow E, Murase T, Verbalis JG, Gainer H (2001) Chronic hypoosmolality induces a selective decrease in magnocellular neurone soma and nuclear size in the rat hypothalamic supraoptic nucleus. J Neuroendocrinol 13:29–36

    PubMed  Google Scholar 

  16. Urso C, Caimi G (2012) Hyponatremic syndrome. Clin Ter 163:e29–e39

    CAS  PubMed  Google Scholar 

  17. Yagil C, Sladek CD (1990) Osmotic regulation of vasopressin and oxytocin release is rate sensitive in hypothalamoneurohypophysial explants. Am J Phys 258:R492–R500

    CAS  Google Scholar 

  18. Deleuze C, Duvoid A, Hussy N (1998) Properties and glial origin of osmotic-dependent release of taurine from the rat supraoptic nucleus. J Physiol 507(Pt 2):463–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang YF, Sun MY, Hou Q, Parpura V (2013) Hyposmolality differentially and spatiotemporally modulates levels of glutamine synthetase and serine racemase in rat supraoptic nucleus. Glia 61:529–538

    Article  PubMed  Google Scholar 

  20. Wang YF, Parpura V (2018) Astroglial modulation of hydromineral balance and cerebral edema. Front Mol Neurosci 11:204

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Araque A, Parpura V, Sanzgiri RP, Haydon PG (1999) Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci 22:208–215

    Article  CAS  PubMed  Google Scholar 

  22. Jiao R, Cui D, Wang SC, Li D, Wang YF (2017) Interactions of the mechanosensitive channels with extracellular matrix, integrins, and cytoskeletal network in osmosensation. Front Mol Neurosci 10:96

    PubMed  PubMed Central  Google Scholar 

  23. Langle SL, Poulain DA, Theodosis DT (2003) Induction of rapid, activity-dependent neuronal-glial remodelling in the adult rat hypothalamus in vitro. Eur J Neurosci 18:206–214

    Article  PubMed  Google Scholar 

  24. Dine J, Ducourneau VR, Fenelon VS, Fossat P, Amadio A, Eder M, Israel JM, Oliet SH, Voisin DL (2014) Extracellular signal-regulated kinase phosphorylation in forebrain neurones contributes to osmoregulatory mechanisms. J Physiol

  25. Wakerley JB, Clarke G, Summerlee AJ (1994) Milk ejection and its control. In: Knobil E, Neill JD (eds) The physiology of reproduction. Raven, New York, pp 1131–1177

    Google Scholar 

  26. Hatton GI, Perlmutter LS, Salm AK, Tweedle CD (1984) Dynamic neuronal-glial interactions in hypothalamus and pituitary: implications for control of hormone synthesis and release. Peptides 5(Suppl 1):121–138

    Article  CAS  PubMed  Google Scholar 

  27. Theodosis DT, Chapman DB, Montagnese C, Poulain DA, Morris JF (1986) Structural plasticity in the hypothalamic supraoptic nucleus at lactation affects oxytocin-, but not vasopressin-secreting neurones. Neuroscience 17:661–678

    Article  CAS  PubMed  Google Scholar 

  28. Hatton GI, Yang QZ, Cobbett P (1987) Dye coupling among immunocytochemically identified neurons in the supraoptic nucleus: increased incidence in lactating rats. Neuroscience 21:923–930

    Article  CAS  PubMed  Google Scholar 

  29. Hatton GI, Yang QZ (2002) Peripartum interneuronal coupling in the supraoptic nucleus. Brain Res 932:120–123

    Article  CAS  PubMed  Google Scholar 

  30. Giaume C, Marin P, Cordier J, Glowinski J, Premont J (1991) Adrenergic regulation of intercellular communications between cultured striatal astrocytes from the mouse. Proc Natl Acad Sci U S A 88:5577–5581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Giaume C, Naus CC, Saez JC, Leybaert L (2021) Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev 101:93–145

    Article  PubMed  Google Scholar 

  32. Montagnese CM, Poulain DA, Vincent JD, Theodosis DT (1987) Structural plasticity in the rat supraoptic nucleus during gestation, post-partum lactation and suckling-induced pseudogestation and lactation. J Endocrinol 115:97–105

    Article  CAS  PubMed  Google Scholar 

  33. Caruso S, Mauro D, Scalia G, Palermo CI, Rapisarda AMC, Cianci A (2018) Oxytocin plasma levels in orgasmic and anorgasmic women. Gynecol Endocrinol 34:69–72

    Article  CAS  PubMed  Google Scholar 

  34. Catheline G, Touquet B, Lombard MC, Poulain DA, Theodosis DT (2006) A study of the role of neuro-glial remodeling in the oxytocin system at lactation. Neuroscience 137:309–316

    Article  CAS  PubMed  Google Scholar 

  35. Lincoln DW, Wakerley JB (1975) Factors governing the periodic activation of supraoptic and paraventricular neurosecretory cells during suckling in the rat. J Physiol 250:443–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Belin V, Moos F (1986) Paired recordings from supraoptic and paraventricular oxytocin cells in suckled rats: recruitment and synchronization. J Physiol 377:369–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wang YF, Negoro H, Honda K (1995) Effects of hemitransection of the midbrain on milk-ejection burst of oxytocin neurones in lactating rat. J Endocrinol 144:463–470

    Article  CAS  PubMed  Google Scholar 

  38. Wang YF, Negoro H, Honda K (1996) Milk ejection bursts of supraoptic oxytocin neurones during bilateral and unilateral suckling in the rat. J Neuroendocrinol 8:427–431

    Article  CAS  PubMed  Google Scholar 

  39. Summerlee AJ, Lincoln DW (1981) Electrophysiological recordings from oxytocinergic neurones during suckling in the unanaesthetized lactating rat. J Endocrinol 90:255–265

    Article  CAS  PubMed  Google Scholar 

  40. Leng G, Shibuki K, Way SA (1988) Effects of raised extracellular potassium on the excitability of, and hormone release from, the isolated rat neurohypophysis. J Physiol 399:591–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Coles JA, Poulain DA (1991) Extracellular K+ in the supraoptic nucleus of the rat during reflex bursting activity by oxytocin neurones. J Physiol 439:383–409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang YF, Hatton GI (2007) Dominant role of betagamma subunits of G-proteins in oxytocin-evoked burst firing. J Neurosci 27:1902–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Theodosis DT, Montagnese C, Rodriguez F, Vincent JD, Poulain DA (1986) Oxytocin induces morphological plasticity in the adult hypothalamo-neurohypophysial system. Nature 322:738–740

    Article  CAS  PubMed  Google Scholar 

  44. Hatton GI, Tweedle CD (1982) Magnocellular neuropeptidergic neurons in hypothalamus: increases in membrane apposition and number of specialized synapses from pregnancy to lactation. Brain Res Bull 8:197–204

    Article  CAS  PubMed  Google Scholar 

  45. Hatton GI (1986) Plasticity in the hypothalamic magnocellular neurosecretory system. Fed Proc 45:2328–2333

    CAS  PubMed  Google Scholar 

  46. de Vries GJ, Veenema AH, Brown CH (2012) Vasopressin and oxytocin: keys to understanding the neural control of physiology and behaviour. J Neuroendocrinol 24:527

    Article  PubMed  Google Scholar 

  47. Cui D, Jia S, Yu J, Li D, Li T, Liu Y, Chang J, Wang X, Liu X, Wang Y-F (2020) Alleviation of cerebral infarction of rats with middle cerebral artery occlusion by inhibition of aquaporin 4 in the supraoptic nucleus. ASN Neuro 12:1759091420960550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Cui D, Jia S, Li T, Li D, Wang X, Liu X, Wang Y-F (2020) Alleviation of brain injury by applying TGN-020 in the supraoptic nucleus via inhibiting vasopressin neurons in rats of focal ischemic stroke. Life Sci. https://doi.org/10.1016/j.lfs.2020.118683

    Article  PubMed  Google Scholar 

  49. Nissen E, Gustavsson P, Widstrom AM, Uvnas-Moberg K (1998) Oxytocin, prolactin, milk production and their relationship with personality traits in women after vaginal delivery or Cesarean section. J Psychosom Obstet Gynaecol 19:49–58

    Article  CAS  PubMed  Google Scholar 

  50. Keenan DM, Veldhuis JD (2016) Pulsatility of hypothalamo-pituitary hormones: a challenge in quantification. Physiology (Bethesda) 31:34–50

    CAS  Google Scholar 

  51. Wang YF, Zhu H (2014) Mechanisms underlying astrocyte regulation of hypothalamic neuroendocrine neuron activity. Sheng Li Ke Xue Jin Zhan 45:177–184

    CAS  PubMed  Google Scholar 

  52. Zhang J, Wang Y, Zheng Z, Sun X, Chen T, Li C, Zhang X, Guo J (2019) Intracellular ion and protein nanoparticle-induced osmotic pressure modify astrocyte swelling and brain edema in response to glutamate stimuli. Redox Biol 21:101112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Inagaki M, Gonda Y, Nishizawa K, Kitamura S, Sato C, Ando S, Tanabe K, Kikuchi K, Tsuiki S, Nishi Y (1990) Phosphorylation sites linked to glial filament disassembly in vitro locate in a non-alpha-helical head domain. J Biol Chem 265:4722–4729

    Article  CAS  PubMed  Google Scholar 

  54. Pekny M, Wilhelmsson U, Bogestal YR, Pekna M (2007) The role of astrocytes and complement system in neural plasticity. Int Rev Neurobiol 82:95–111

    Article  CAS  PubMed  Google Scholar 

  55. Romero-Aleman Mdel M, Monzon-Mayor M, Santos E, Yanes CM (2013) Regrowth of transected retinal ganglion cell axons despite persistent astrogliosis in the lizard (Gallotia galloti). J Anat 223:22–37

    Article  PubMed  Google Scholar 

  56. Benabdesselam R, Rendon A, Dorbani-Mamine L, Hardin-Pouzet H (2019) Effect of Dp71 deficiency on the oxytocin hypothalamic axis in osmoregulation function in mice. Acta Histochem 121:268–276

    Article  CAS  PubMed  Google Scholar 

  57. Souttou S, Benabdesselam R, Siqueiros-Marquez L, Sifi M, Deliba M, Vacca O, Charles-Messance H, Vaillend C, Rendon A, Guillonneau X, Dorbani-Mamine L (2019) Expression and localization of dystrophins and beta-dystroglycan in the hypothalamic supraoptic nuclei of rat from birth to adulthood. Acta Histochem 121:218–226

    Article  CAS  PubMed  Google Scholar 

  58. Wang YF, Hatton GI (2007) Interaction of extracellular signal-regulated protein kinase 1/2 with actin cytoskeleton in supraoptic oxytocin neurons and astrocytes: role in burst firing. J Neurosci 27:13822–13834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Sullivan SM, Lee A, Bjorkman ST, Miller SM, Sullivan RK, Poronnik P, Colditz PB, Pow DV (2007) Cytoskeletal anchoring of GLAST determines susceptibility to brain damage: an identified role for GFAP. J Biol Chem 282:29414–29423

    Article  CAS  PubMed  Google Scholar 

  60. Potokar M, Morita M, Wiche G, Jorgacevski J (2020) The diversity of intermediate filaments in astrocytes. Cells 9:1604

    Article  CAS  PubMed Central  Google Scholar 

  61. Errante LD, Wiche G, Shaw G (1994) Distribution of plectin, an intermediate filament-associated protein, in the adult rat central nervous system. J Neurosci Res 37:515–528

    Article  CAS  PubMed  Google Scholar 

  62. Hertz L, Xu J, Song D, Yan E, Gu L, Peng L (2013) Astrocytic and neuronal accumulation of elevated extracellular K(+) with a 2/3 K(+)/Na(+) flux ratio-consequences for energy metabolism, osmolarity and higher brain function. Front Comput Neurosci 7:114

    Article  PubMed  PubMed Central  Google Scholar 

  63. Song Y, Gunnarson E (2012) Potassium dependent regulation of astrocyte water permeability is mediated by cAMP signaling. PLoS One 7:e34936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hatton GI, Wang YF (2008) Neural mechanisms underlying the milk ejection burst and reflex. Prog Brain Res 170:155–166

    Article  CAS  PubMed  Google Scholar 

  65. Li D, Liu H, Liu X, Wang H, Li T, Wang X, Jia S, Wang P, Wang YF (2020) Involvement of hyperpolarization-activated cyclic nucleotide-gated channel 3 in oxytocin neuronal activity in lactating rats with pup deprivation. ASN Neuro 12:1759091420944658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Li D, Liu X, Liu H, Li T, Jia S, Wang X, Wang P, Qin D, Wang Y-F (2020) Key roles of cyclooxygenase 2-protein kinase A-HCN3 pathway in the regulation of oxytocin neuronal activity in lactating rats with intermittent pup-deprivation. Neuroscience. https://doi.org/10.1016/j.neuroscience.2020.10.016

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li D, Li T, Yu J, Liu X, Jia S, Wang X, Wang P, Wang YF (2020) Astrocytic Modulation of Supraoptic Oxytocin Neuronal Activity in Rat Dams with Pup-Deprivation at Different Stages of Lactation. Neurochem Res

  68. Wang Y-F, Hatton GI (2009) Oxytocin, lactation and postpartum depression. Front Neurosci 3:252–253

    Google Scholar 

  69. Wang YF, Parpura V (2016) Central role of maladapted astrocytic plasticity in ischemic brain edema formation. Front Cell Neurosci 10:129

    PubMed  PubMed Central  Google Scholar 

  70. Jia SW, Liu XY, Wang SC, Wang YF (2016) Vasopressin hypersecretion-associated brain edema formation in ischemic stroke: Underlying mechanisms. J Stroke Cerebrovasc Dis 25:1289–1300

    Article  PubMed  Google Scholar 

  71. Okada Y, Sato K, Numata T (2009) Pathophysiology and puzzles of the volume-sensitive outwardly rectifying anion channel. J Physiol 587:2141–2149

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Pasantes-Morales H, Lezama RA, Ramos-Mandujano G, Tuz KL (2006) Mechanisms of cell volume regulation in hypo-osmolality. Am J Med 119:S4–S11

    Article  CAS  PubMed  Google Scholar 

  73. Yool AJ (2007) Aquaporins: multiple roles in the central nervous system. Neuroscientist 13:470–485

    Article  CAS  PubMed  Google Scholar 

  74. Mongin AA (2016) Volume-regulated anion channel – a frenemy within the brain. Pflugers Arch 468:421–441

    Article  CAS  PubMed  Google Scholar 

  75. Choe KY, Olson JE, Bourque CW (2012) Taurine release by astrocytes modulates osmosensitive glycine receptor tone and excitability in the adult supraoptic nucleus. J Neurosci 32:12518–12527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hussy N, Bres V, Rochette M, Duvoid A, Alonso G, Dayanithi G, Moos FC (2001) Osmoregulation of vasopressin secretion via activation of neurohypophysial nerve terminals glycine receptors by glial taurine. J Neurosci 21:7110–7116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yue C, Mutsuga N, Verbalis J, Gainer H (2006) Microarray analysis of gene expression in the supraoptic nucleus of normoosmotic and hypoosmotic rats. Cell Mol Neurobiol 26:959–978

    Article  CAS  PubMed  Google Scholar 

  78. Wang YF, Hamilton K (2009) Chronic vs. acute interactions between supraoptic oxytocin neurons and astrocytes during lactation: role of glial fibrillary acidic protein plasticity. ScientificWorldJournal 9:1308–1320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Wolosker H, Balu DT (2020) D-Serine as the gatekeeper of NMDA receptor activity: implications for the pharmacologic management of anxiety disorders. Transl Psychiatry 10:184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Skowronska K, Obara-Michlewska M, Zielinska M, Albrecht J (2019) NMDA receptors in astrocytes: in search for roles in neurotransmission and astrocytic homeostasis. Int J Mol Sci 20:309

    Article  PubMed Central  CAS  Google Scholar 

  81. Castro MA, Beltran FA, Brauchi S, Concha II (2009) A metabolic switch in brain: glucose and lactate metabolism modulation by ascorbic acid. J Neurochem 110:423–440

    Article  CAS  PubMed  Google Scholar 

  82. Schousboe A, Sickmann HM, Bak LK, Schousboe I, Jajo FS, Faek SA, Waagepetersen HS (2011) Neuron-glia interactions in glutamatergic neurotransmission: roles of oxidative and glycolytic adenosine triphosphate as energy source. J Neurosci Res 89:1926–1934

    Article  CAS  PubMed  Google Scholar 

  83. Decavel C, Hatton GI (1995) Taurine immunoreactivity in the rat supraoptic nucleus: prominent localization in glial cells. J Comp Neurol 354:13–26

    Article  CAS  PubMed  Google Scholar 

  84. Wang P, Qin D, Wang YF (2017) Oxytocin rapidly changes astrocytic GFAP plasticity by differentially modulating the expressions of pERK 1/2 and protein kinase A. Front Mol Neurosci 10:262

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Ponzio TA, Ni Y, Montana V, Parpura V, Hatton GI (2006) Vesicular glutamate transporter expression in supraoptic neurones suggests a glutamatergic phenotype. J Neuroendocrinol 18:253–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Montana V, Malarkey EB, Verderio C, Matteoli M, Parpura V (2006) Vesicular transmitter release from astrocytes. Glia 54:700–715

    Article  PubMed  Google Scholar 

  87. Verkhratsky A, Matteoli M, Parpura V, Mothet JP, Zorec R (2016) Astrocytes as secretory cells of the central nervous system: idiosyncrasies of vesicular secretion. EMBO J 35:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Fokin AI, Brodsky IB, Burakov AV, Nadezhdina ES (2014) Interaction of early secretory pathway and Golgi membranes with microtubules and microtubule motors. Biochemistry (Mosc) 79:879–893

    Article  CAS  Google Scholar 

  89. Zhang R, Alushin GM, Brown A, Nogales E (2015) Mechanistic origin of microtubule dynamic instability and its modulation by EB proteins. Cell 162:849–859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Chatterjee S, Sikdar SK (2013) Corticosterone treatment results in enhanced release of peptidergic vesicles in astrocytes via cytoskeletal rearrangements. Glia 61:2050–2062

    Article  PubMed  Google Scholar 

  91. Cotrina ML, Lin JH, Nedergaard M (1998) Cytoskeletal assembly and ATP release regulate astrocytic calcium signaling. J Neurosci 18:8794–8804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Kreft M, Potokar M, Stenovec M, Pangrsic T, Zorec R (2009) Regulated exocytosis and vesicle trafficking in astrocytes. Ann N Y Acad Sci 1152:30–42

    Article  CAS  PubMed  Google Scholar 

  93. Li D, Liu X, Liu T, Liu H, Tong L, Jia S, Wang YF (2020) Neurochemical regulation of the expression and function of glial fibrillary acidic protein in astrocytes. Glia 68:878–897

    Article  PubMed  Google Scholar 

  94. Kohleisen B, Hutzler P, Shumay E, Ovod V, Erfle V (2001) HIV-1 Nef co-localizes with the astrocyte-specific cytoskeleton protein GFAP in persistently nef-expressing human astrocytes. J Neurovirol 7:52–55

    Article  CAS  PubMed  Google Scholar 

  95. Ding M, Eliasson C, Betsholtz C, Hamberger A, Pekny M (1998) Altered taurine release following hypotonic stress in astrocytes from mice deficient for GFAP and vimentin. Brain Res Mol Brain Res 62:77–81

    Article  CAS  PubMed  Google Scholar 

  96. Hughes EG, Maguire JL, McMinn MT, Scholz RE, Sutherland ML (2004) Loss of glial fibrillary acidic protein results in decreased glutamate transport and inhibition of PKA-induced EAAT2 cell surface trafficking. Brain Res Mol Brain Res 124:114–123

    Article  CAS  PubMed  Google Scholar 

  97. Dzyubenko E, Gottschling C, Faissner A (2016) Neuron-Glia interactions in neural plasticity: contributions of neural extracellular matrix and perineuronal nets. Neural Plast 2016:5214961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Vacher CM, Grange-Messent V, St-Louis R, Raison D, Lacorte JM, Hardin-Pouzet H (2011) Architecture of the hypothalamo-posthypophyseal complex is controlled by monoamines. J Neurosci Res 89:1711–1722

    Article  CAS  PubMed  Google Scholar 

  99. Nicchia GP, Rossi A, Mola MG, Procino G, Frigeri A, Svelto M (2008) Actin cytoskeleton remodeling governs aquaporin-4 localization in astrocytes. Glia 56:1755–1766

    Article  PubMed  Google Scholar 

  100. Theodosis DT, Schachner M, Neumann ID (2004) Oxytocin neuron activation in NCAM-deficient mice: anatomical and functional consequences. Eur J Neurosci 20:3270–3280

    Article  CAS  PubMed  Google Scholar 

  101. Nothias F, Vernier P, von Boxberg Y, Mirman S, Vincent JD (1997) Modulation of NCAM polysialylation is associated with morphofunctional modifications in the hypothalamo-neurohypophysial system during lactation. Eur J Neurosci 9:1553–1565

    Article  CAS  PubMed  Google Scholar 

  102. Messing A, Brenner M (2020) GFAP at 50. ASN Neuro 12:1759091420949680

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hatton GI (2004) Morphological plasticity of astroglial/neuronal interactions: functional implications. In: Hatton GI, Parpura V (eds) Glial neuronal signaling. Kluwer Academic Publishers, Boston, pp 99–124

    Chapter  Google Scholar 

  104. Tobin VA, Leng G, Ludwig M, Douglas AJ (2010) Increased sensitivity of monoamine release in the supraoptic nucleus in late pregnancy: region- and stimulus-dependent responses. J Neuroendocrinol 22:430–437

    Article  CAS  PubMed  Google Scholar 

  105. Kunz N, Camm EJ, Somm E, Lodygensky G, Darbre S, Aubert ML, Huppi PS, Sizonenko SV, Gruetter R (2011) Developmental and metabolic brain alterations in rats exposed to bisphenol A during gestation and lactation. Int J Dev Neurosci 29:37–43

    Article  CAS  PubMed  Google Scholar 

  106. Lafarga M, Berciano MT, Del Olmo E, Andres MA, Pazos A (1992) Osmotic stimulation induces changes in the expression of beta-adrenergic receptors and nuclear volume of astrocytes in supraoptic nucleus of the rat. Brain Res 588:311–316

    Article  CAS  PubMed  Google Scholar 

  107. Vardjan N, Horvat A, Anderson JE, Yu D, Croom D, Zeng X, Luznik Z, Kreft M, Teng YD, Kirov SA, Zorec R (2016) Adrenergic activation attenuates astrocyte swelling induced by hypotonicity and neurotrauma. Glia 64:1034–1049

    Article  PubMed  PubMed Central  Google Scholar 

  108. Niermann H, Amiry-Moghaddam M, Holthoff K, Witte OW, Ottersen OP (2001) A novel role of vasopressin in the brain: modulation of activity-dependent water flux in the neocortex. J Neurosci 21:3045–3051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Marmarou CR, Liang X, Abidi NH, Parveen S, Taya K, Henderson SC, Young HF, Filippidis AS, Baumgarten CM (2014) Selective vasopressin-1a receptor antagonist prevents brain edema, reduces astrocytic cell swelling and GFAP, V1aR and AQP4 expression after focal traumatic brain injury. Brain Res 1581:89–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Queipo MJ, Gil-Redondo JC, Morente V, Ortega F, Miras-Portugal MT, Delicado EG, Perez-Sen R (2017) P2X7 nucleotide and EGF receptors exert dual modulation of the dual-specificity phosphatase 6 (MKP-3) in granule neurons and astrocytes, contributing to negative feedback on ERK signaling. Front Mol Neurosci 10:448

    Article  PubMed  CAS  Google Scholar 

  111. Neumann I, Russell JA, Landgraf R (1993) Oxytocin and vasopressin release within the supraoptic and paraventricular nuclei of pregnant, parturient and lactating rats: a microdialysis study. Neuroscience 53:65–75

    Article  CAS  PubMed  Google Scholar 

  112. Verkhratsky A, Rodriguez JJ, Parpura V (2012) Calcium signalling in astroglia. Mol Cell Endocrinol 353:45–56

    Article  CAS  PubMed  Google Scholar 

  113. Sato M, Sobhan U, Tsumura M, Kuroda H, Soya M, Masamura A, Nishiyama A, Katakura A, Ichinohe T, Tazaki M, Shibukawa Y (2013) Hypotonic-induced stretching of plasma membrane activates transient receptor potential vanilloid channels and sodium-calcium exchangers in mouse odontoblasts. J Endod 39:779–787

    Article  PubMed  Google Scholar 

  114. Su G, Kintner DB, Flagella M, Shull GE, Sun D (2002) Astrocytes from Na(+)-K(+)-Cl(-) cotransporter-null mice exhibit absence of swelling and decrease in EAA release. Am J Phys Cell Physiol 282:C1147–C1160

    Article  CAS  Google Scholar 

  115. Armstrong WE, Rubrum A, Teruyama R, Bond CT, Adelman JP (2005) Immunocytochemical localization of small-conductance, calcium-dependent potassium channels in astrocytes of the rat supraoptic nucleus. J Comp Neurol 491:175–185

    Article  CAS  PubMed  Google Scholar 

  116. Badaut J, Nehlig A, Verbavatz J, Stoeckel M, Freund-Mercier MJ, Lasbennes F (2000) Hypervascularization in the magnocellular nuclei of the rat hypothalamus: relationship with the distribution of aquaporin-4 and markers of energy metabolism. J Neuroendocrinol 12:960–969

    Article  CAS  PubMed  Google Scholar 

  117. Carter DA, Murphy D (1989) Cyclic nucleotide dynamics in the rat hypothalamus during osmotic stimulation: in vivo and in vitro studies. Brain Res 487:350–356

    Article  CAS  PubMed  Google Scholar 

  118. Moran J, Morales-Mulia M, Pasantes-Morales H (2001) Reduction of phospholemman expression decreases osmosensitive taurine efflux in astrocytes. Biochim Biophys Acta 1538:313–320

    Article  CAS  PubMed  Google Scholar 

  119. Deleuze C, Duvoid A, Moos FC, Hussy N (2000) Tyrosine phosphorylation modulates the osmosensitivity of volume-dependent taurine efflux from glial cells in the rat supraoptic nucleus. J Physiol 523(Pt 2):291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Calka J, Wolf G, Brosz M (1994) Ultrastructural demonstration of NADPH-diaphorase histochemical activity in the supraoptic nucleus of normal and dehydrated rats. Brain Res Bull 34:301–308

    Article  CAS  PubMed  Google Scholar 

  121. Grange-Messent V, Raison D, Dugas B, Calas A (2004) Noradrenaline up-regulates the neuronal and the inducible nitric oxide synthase isoforms in magnocellular neurons of rat brain slices. J Neurosci Res 78:683–690

    Article  CAS  PubMed  Google Scholar 

  122. Vacher CM, Hardin-Pouzet H, Steinbusch HW, Calas A, De Vente J (2003) The effects of nitric oxide on magnocellular neurons could involve multiple indirect cyclic GMP-dependent pathways. Eur J Neurosci 17:455–466

    Article  CAS  PubMed  Google Scholar 

  123. Reis WL, Biancardi VC, Son S, Antunes-Rodrigues J, Stern JE (2012) Enhanced expression of heme oxygenase-1 and carbon monoxide excitatory effects in oxytocin and vasopressin neurones during water deprivation. J Neuroendocrinol 24:653–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Coletti R, de Lima JBM, Vechiato FMV, de Oliveira FL, Debarba LK, Almeida-Pereira G, Elias LLK, Antunes-Rodrigues J (2019) Nitric oxide acutely modulates hypothalamic and neurohypophyseal carbon monoxide and hydrogen sulphide production to control vasopressin, oxytocin and atrial natriuretic peptide release in rats. J Neuroendocrinol 31:e12686

    Article  PubMed  CAS  Google Scholar 

  125. Okere CO, Wang YF, Higuchi T, Negoro H, Okutani F, Takahashi S, Murata T (1996) The effect of systemic and central nitric oxide administration on milk availability in lactating rats. Neuroreport 8:243–247

    Article  CAS  PubMed  Google Scholar 

  126. Benfenati V, Amiry-Moghaddam M, Caprini M, Mylonakou MN, Rapisarda C, Ottersen OP, Ferroni S (2007) Expression and functional characterization of transient receptor potential vanilloid-related channel 4 (TRPV4) in rat cortical astrocytes. Neuroscience 148:876–892

    Article  CAS  PubMed  Google Scholar 

  127. Borgdorff AJ, Somjen GG, Wadman WJ (2000) Two mechanisms that raise free intracellular calcium in rat hippocampal neurons during hypoosmotic and low NaCl treatment. J Neurophysiol 83:81–89

    Article  CAS  PubMed  Google Scholar 

  128. Shigetomi E, Saito K, Sano F, Koizumi S (2019) Aberrant calcium signals in reactive astrocytes: a key process in neurological disorders. Int J Mol Sci 20

Download references

Acknowledgements

VP is an Honorary Professor at University of Rijeka, Croatia.

Funding

The publication is sponsored by the National Natural Science Foundation of China (Grant No. 31471113, YFW) and the Fund of "Double-First-Class" Construction of Harbin Medical University (key laboratory of preservation of human genetic resources and disease control in China). VP’s work is supported by a grant from the National Institute of General Medical Sciences of the National Institutes of Health (R01GM123971).

Author information

Authors and Affiliations

Authors

Contributions

SCW wrote the first draft; VP and YFW conceived the content of this manuscript and edited subsequent drafts.

Corresponding authors

Correspondence to Vladimir Parpura or Yu-Feng Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Special Issue: In Honor of Vladimir Parpura.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S.C., Parpura, V. & Wang, YF. Astroglial Regulation of Magnocellular Neuroendocrine Cell Activities in the Supraoptic Nucleus. Neurochem Res 46, 2586–2600 (2021). https://doi.org/10.1007/s11064-020-03172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-020-03172-2

Key words

Navigation