Skip to main content
Log in

Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat

  • Original Article
  • Published:
Mycorrhiza Aims and scope Submit manuscript

Abstract

Mycoheterotrophic plants typically form associations with a narrow range of mycorrhizal fungi. Consequently, mycorrhizal specialization is often considered to be an important step in mycoheterotrophic evolution. However, it remains unclear whether such specialization is likely to occur in plants of the genus Pyrola, which are generally associated with fungi in multiple ectomycorrhizal families. Here, we investigated the mycorrhizal communities of a nearly fully mycoheterotrophic Pyrola species (Pyrola subaphylla), a closely related partially mycoheterotrophic Pyrola species (Pyrola japonica), and a co-occurring autotrophic ectomycorrhizal tree, Quercus crispula, which is their potential carbon source, in a cool-temperate Japanese forest. High-throughput DNA sequencing revealed that numerous common ectomycorrhizal OTUs interact with the two Pyrola species and Q. crispula, thereby providing an opportunity to exploit a certain amount of carbon from common mycorrhizal networks. In addition, not only P. japonica but also P. subaphylla exhibited exceptionally high alpha mycobiont diversity, with 52 ectomycorrhizal OTUs belonging to 12 families being identified as P. subaphylla mycobionts and 69 ectomycorrhizal OTUs in 18 families being detected as P. japonica mycobionts. Nonetheless, the beta mycobiont diversity of P. subaphylla and P. japonica individuals was significantly lower than that of Q. crispula. Moreover, the beta mycobiont diversity of P. subaphylla was found to be significantly lower than that of P. japonica. Therefore, despite their seemingly broad mycorrhizal interactions, the two Pyrola species (particularly P. subaphylla) showed consistent fungal associations, suggesting that mycorrhizal specialization may have developed during the course of mycoheterotrophic evolution within the genus Pyrola.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bidartondo MI, Bruns TD (2001) Extreme specificity in epiparasitic Monotropoideae (Ericaceae): widespread phylogenetic and geographical structure. Mol Ecol 10:2285–2295

    Article  CAS  PubMed  Google Scholar 

  • Bidartondo MI, Bruns TD (2002) Fine-level mycorrhizal specificity in the Monotropoideae (Ericaceae): specificity for fungal species groups. Mol Ecol 11:557–569

    Article  CAS  PubMed  Google Scholar 

  • Bidartondo MI, Redecker D, Hijri I, Wiemken A, Bruns TD, Domínguez L, Sérsic A, Leake JR, Read DJ (2002) Epiparasitic plants specialized on arbuscular mycorrhizal fungi. Nature 419:389–392

    Article  CAS  PubMed  Google Scholar 

  • Borowicz VA, Juliano SA (1991) Specificity in host-fungus associations: do mutualists differ from antagonists? Evol Ecol 5:385–392. https://doi.org/10.1007/BF02214155

    Article  Google Scholar 

  • Brown SP, Veach AM, Rigdon-Huss AR, Grond K, Lickteig SK, Lothamer K, Oliver AK, Jumpponen A (2015) Scraping the bottom of the barrel: are rare high throughput sequences artifacts? Fungal Ecol 13:221–225

    Article  Google Scholar 

  • Bruns TD, Bidartondo MI, Taylor DL (2002) Host specificity in ectomycorrhizal communities: what do the exceptions tell us? Integr Comp Biol 42:352–359

    Article  PubMed  Google Scholar 

  • Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. Ecology 93:2533–2547

    Article  PubMed  Google Scholar 

  • Chase JM, Myers JA (2011) Disentangling the importance of ecological niches from stochastic processes across scales. Philos Trans R Soc Lond Ser B Biol Sci 366:2351–2363

    Article  Google Scholar 

  • Cook JM, Rasplus JY (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248

    Article  Google Scholar 

  • Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gollotte A, Van Tuinen D, Atkinson D (2004) Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117

    Article  PubMed  Google Scholar 

  • Gomes SIF, Aguirre-Gutierrez J, Bidartondo MI, Merckx V (2017) Arbuscular mycorrhizal interactions of mycoheterotrophic Thismia are more specialized than in autotrophic plants. New Phytol 213:1418–1427. https://doi.org/10.1111/nph.14249

    Article  CAS  PubMed  Google Scholar 

  • Gotelli NJ (2000) Null model analysis of species co-occurrence patterns. Ecology 81:2606–2621

    Article  Google Scholar 

  • Hoeksema JD (1999) Investigating the disparity in host specificity between AM and EM fungi: lessons from theory and better-studied systems. Oikos 84:327–332. https://doi.org/10.2307/3546730

    Article  Google Scholar 

  • Hsieh T, Ma K, Chao A (2016) iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol Evol 7:1451–1456. https://doi.org/10.1111/2041-210x.12613

  • Huson DH, Auch AF, Qi J, Schuster SC (2007) MEGAN analysis of metagenomic data. Genome Res 17:377–386. https://doi.org/10.1101/gr.5969107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hynson NA, Bruns TD (2009) Evidence of a myco-heterotroph in the plant family Ericaceae that lacks mycorrhizal specificity. Proc R Soc Lond B Biol Sci 276:4053–4059

    Google Scholar 

  • Hynson NA, Preiss K, Gebauer G, Bruns TD (2009) Isotopic evidence of full and partial myco-heterotrophy in the plant tribe Pyroleae (Ericaceae). New Phytol 182:719–726

    Article  PubMed  Google Scholar 

  • Hynson NA, Madsen TP, Selosse MA, Adam IKU, Ogura-Tsujita Y, Roy M, Gebauer G (2013) The physiological ecology of mycoheterotrophy. In: Merckx V (ed) Mycoheterotrophy: the biology of plants living on fungi. Springer, New York, pp 297–342

    Chapter  Google Scholar 

  • Hynson NA, Bidartondo MI, Read DJ (2015) Are there geographic mosaics of mycorrhizal specificity and partial mycoheterotrophy? A case study in Moneses uniflora (Ericaceae). New Phytol 208:1003–1007. https://doi.org/10.1111/nph.13587

    Article  PubMed  Google Scholar 

  • Jacquemyn H, Merckx VS (2019) Mycorrhizal symbioses and the evolution of trophic modes in plants. J Ecol 107:1567–1581

    Article  Google Scholar 

  • Jacquemyn H, Waud M, Brys R (2018) Mycorrhizal divergence and selection against immigrant seeds in forest and dune populations of the partially mycoheterotrophic Pyrola rotundifolia. Mol Ecol 27:5228–5237

    Article  PubMed  Google Scholar 

  • Jia S, Nakano T, Hattori M, Nara K (2017) Root-associated fungal communities in three Pyroleae species and their mycobiont sharing with surrounding trees in subalpine coniferous forests on Mount Fuji, Japan. Mycorrhiza 27:733–745

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansson VA, Bahram M, Tedersoo L, Kõljalg U, Eriksson O (2017) Specificity of fungal associations of Pyroleae and Monotropa hypopitys during germination and seedling development. Mol Ecol 26:2591–2604. https://doi.org/10.1111/mec.14050

    Article  CAS  PubMed  Google Scholar 

  • Jolles DD, Wilson CA (2014) Pyrola crypta: a Pacific Northwest species belonging to the Pyrola picta species complex. Taxon 63:789–800. https://doi.org/10.12705/634.15

    Article  Google Scholar 

  • Kennedy AH, Taylor DL, Watson LE (2011) Mycorrhizal specificity in the fully mycoheterotrophic Hexalectris Raf. (Orchidaceae: Epidendroideae). Mol Ecol 20:1303–1316

    Article  PubMed  Google Scholar 

  • Lallemand F, Gaudeul M, Lambourdière J, Matsuda Y, Hashimoto Y, Selosse M (2016) The elusive predisposition to mycoheterotrophy in Ericaceae. New Phytol 212:314–319

    Article  PubMed  Google Scholar 

  • Leake JR (1994) The biology of myco-heterotrophic (‘saprophytic’) plants. New Phytol 127:171–216

    Article  PubMed  Google Scholar 

  • Li W, Fu L, Niu B, Wu S, Wooley J (2012) Ultrafast clustering algorithms for metagenomic sequence analysis. Brief Bioinform 13:656–668. https://doi.org/10.1093/bib/bbs035

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu ZW, Zhou J, Liu ED, Peng H (2010) A molecular phylogeny and a new classification of Pyrola (Pyroleae, Ericaceae). Taxon 59:690–1700

  • Lundberg DS, Yourstone S, Mieczkowski P, Jones CD, Dangl JL (2013) Practical innovations for high-throughput amplicon sequencing. Nat Methods 10:999–1002. https://doi.org/10.1038/nmeth.2634

    Article  CAS  PubMed  Google Scholar 

  • Matsuda Y, Shimizu S, Mori M, Ito SI, Selosse MA (2012) Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments. Am J Bot 99:1177–1188

    Article  CAS  PubMed  Google Scholar 

  • Merckx V, Bidartondo MI (2008) Breakdown and delayed cospeciation in the arbuscular mycorrhizal mutualism. Proc R Soc B-Biol Sci 275:1029–1035

    Article  Google Scholar 

  • Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248

    Article  Google Scholar 

  • Nilsson RH, Larsson K, Taylor AFS, Bengtsson-Palme J, Jeppesen TS, Schigel D, Kennedy P, Picard K, Glöckner FO, Tedersoo L (2019) The UNITE database for molecular identification of fungi: handling dark taxa and parallel taxonomic classifications. Nucleic Acids Res 47:D259–D264

  • Ogura-Tsujita Y, Yukawa T (2008) High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot 95:93–97

    Article  PubMed  Google Scholar 

  • Ogura-Tsujita Y, Gebauer G, Hashimoto T, Umata H, Yukawa T (2009) Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proc R Soc B-Biol Sci 276:761–767. https://doi.org/10.1098/rspb.2008.1225

    Article  CAS  Google Scholar 

  • Ogura-Tsujita Y, Yokoyama J, Miyoshi K, Yukawa T (2012) Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). Am J Bot 99:1158–1176

    Article  PubMed  Google Scholar 

  • Okayama M, Yamato M, Yagame T, Iwase K (2012) Mycorrhizal diversity and specificity in Lecanorchis (Orchidaceae). Mycorrhiza 22:545–553. https://doi.org/10.1007/s00572-012-0429-z

    Article  PubMed  Google Scholar 

  • Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2015) Vegan: community ecology package. R package version 2.3-2. Vegan: community ecology package

  • Perez-Lamarque B, Selosse MA, Opik M, Morlon H, Martos F (2020) Cheating in arbuscular mycorrhizal mutualism: a network and phylogenetic analysis of mycoheterotrophy. New Phytol 226:1822–1835

    Article  PubMed  Google Scholar 

  • R Development Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

  • Rognes T, Flouri T, Nichols B, Quince C, Mahé F (2016) VSEARCH: a versatile open source tool for metagenomics. PeerJ 4:e2584

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy M, Yagame T, Yamato M, Iwase K, Heinz C, Faccio A, Bonfante P, Selosse MA (2009a) Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Ann Bot 104:595–610

    Article  PubMed  PubMed Central  Google Scholar 

  • Roy M, Watthana S, Stier A, Richard F, Vessabutr S, Selosse MA (2009b) Two mycoheterotrophic orchids from Thailand tropical dipterocarpacean forests associate with a broad diversity of ectomycorrhizal fungi. BMC Biol 7:51. https://doi.org/10.1186/1741-7007-7-51

    Article  PubMed  PubMed Central  Google Scholar 

  • Selosse MA, Roy M (2009) Green plants that feed on fungi: facts and questions about mixotrophy. Trends Plant Sci 14:64–70

    Article  CAS  PubMed  Google Scholar 

  • Shefferson RP, Bunch W, Cowden CC, Lee Y, Kartzinel TR, Yukawa T, Downing J, Jiang H (2019) Does evolutionary history determine specificity in broad ecological interactions? J Ecol 107:1582–1593

    Article  Google Scholar 

  • Shutoh K, Kaneko S, Suetsugu K, Naito YI, Kurosawa T (2016) Variation in vegetative morphology tracks the complex genetic diversification of the mycoheterotrophic species Pyrola japonica sensu lato. Am J Bot 103:1618–1629. https://doi.org/10.3732/ajb.1600091

    Article  PubMed  Google Scholar 

  • Shutoh K, Kaneko S, Kurosawa T (2017) Taxonomy and distribution of Pyrola subaphylla Maxim. (Pyroleae, Ericaceae). Acta Phytotaxon Geobot 68:181–192

    Google Scholar 

  • Shutoh K, Suetsugu K, Kaneko S, Kurosawa T (2018) Comparative morphological analysis of two parallel mycoheterotrophic transitions reveals divergent and convergent traits in the genus Pyrola (Pyroleae, Ericaceae). J Plant Res 1–9. https://doi.org/10.1007/s10265-018-1040-y

  • Smith S, Read D (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, London

    Google Scholar 

  • Suetsugu K, Matsubayashi J, Tayasu I (2020a) Some mycoheterotrophic orchids depend on carbon from dead wood: novel evidence from a radiocarbon approach. New Phytol 227:1519–1529

    Article  CAS  PubMed  Google Scholar 

  • Suetsugu K, Taketomi S, Tanabe AS, Haraguchi TF, Tayasu I, Toju H (2020b) Isotopic and molecular data support mixotrophy in Ophioglossum at the sporophytic stage. New Phytol 228:415–419

    Article  PubMed  Google Scholar 

  • Suetsugu K, Matsubayashi J, Ogawa NO, Murata S, Sato R, Tomimatsu H (2020c) Isotopic evidence of arbuscular mycorrhizal cheating in a grassland gentian species. Oecologia 192:929–937

    Article  PubMed  Google Scholar 

  • Tanabe AS (2018) “Claident v0.2.2018.05.29” a program distributed by the author. Available online at: http://www.fifthdimension.jp/. Accessed 3 Apr 2019

  • Tanabe AS, Toju H (2013) Two new computational methods for universal DNA barcoding: a benchmark using barcode sequences of bacteria, archaea, animals, fungi, and land plants. PLoS One 8:e76910. https://doi.org/10.1371/journal.pone.0076910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taylor DL, Bruns TD (1999) Population, habitat and genetic correlates of mycorrhizal specialization in the ‘cheating’ orchids Corallorhiza maculata and C. mertensiana. Mol Ecol 8:1719–1732

    Article  Google Scholar 

  • Taylor DL, McCormick MK (2008) Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytol 177:1020–1033

    Article  CAS  PubMed  Google Scholar 

  • Tedersoo L, Pellet P, Kõljalg U, Selosse MA (2007) Parallel evolutionary paths to mycoheterotrophy in understorey Ericaceae and Orchidaceae: ecological evidence for mixotrophy in Pyroleae. Oecologia 151:206–217. https://doi.org/10.1007/s00442-006-0581-2

    Article  PubMed  Google Scholar 

  • Toju H, Yamamoto S, Sato H, Tanabe AS (2013) Sharing of diverse mycorrhizal and root-endophytic fungi among plant species in an oak-dominated cool-temperate forest. PLoS One 8:e78248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uesugi T, Nakano M, Selosse MA, Obase K, Matsuda Y (2016) Pyrola japonica, a partially mycoheterotrophic Ericaceae, has mycorrhizal preference for russulacean fungi in central Japan. Mycorrhiza 26:819–829. https://doi.org/10.1007/s00572-016-0715-2

    Article  PubMed  Google Scholar 

  • Yagame T, Ogura-Tsujita Y, Kinoshita A, Iwase K, Yukawa T (2016) Fungal partner shifts during the evolution of mycoheterotrophy in Neottia. Am J Bot 103:1630–1641. https://doi.org/10.3732/ajb.1600063

    Article  PubMed  Google Scholar 

  • Yamato M, Ogura-Tsujita Y, Takahashi H, Yukawa T (2014) Significant difference in mycorrhizal specificity between an autotrophic and its sister mycoheterotrophic plant species of Petrosaviaceae. J Plant Res 127:685–693. https://doi.org/10.1007/s10265-014-0661-z

    Article  CAS  PubMed  Google Scholar 

  • Yamato M, Takahashi H, Shimono A, Kusakabe R, Yukawa T (2016) Distribution of Petrosavia sakuraii (Petrosaviaceae), a rare mycoheterotrophic plant, may be determined by the abundance of its mycobionts. Mycorrhiza 26:417–427. https://doi.org/10.1007/s00572-016-0680-9

    Article  CAS  PubMed  Google Scholar 

  • Zimmer K, Hynson NA, Gebauer G, Allen EB, Allen MF, Read DJ (2007) Wide geographical and ecological distribution of nitrogen and carbon gains from fungi in pyroloids and monotropoids (Ericaceae) and in orchids. New Phytol 175:166–175

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Michiko Ishida for assistance in figure preparation.

Funding

This work was financially supported by JSPS KAKENHI (Grant Number 17H05016) to K. Suetsugu.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Suetsugu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Fig. S1

Interpolated and extrapolated ectomycorrhizal operational taxonomic unit (OTU) accumulation curves (q = 0) focusing on number of plots among Pyrola subaphylla (Ps, n = 6), Pyrola japonica (Pj, n = 6), and Quercus crispula (Qc, n = 12). The shaded areas represent the 95% confidence intervals. (JPG 744 kb)

Fig. S2

Interpolated and extrapolated ectomycorrhizal OTU accumulation curves (q = 0) focusing on number of root samples among Pyrola subaphylla (Ps, 5–7 samples per plot), P. japonica (Pj, 7–9 samples per plot), and Quercus crispula (Qc, 2–12 samples per plot). Shaded area represents 95% confidence interval. The letters at the top of each graph indicate the plot ID. (JPG 2231 kb)

Table S1

The sequencing reads of each OTU detected in P. subaphylla, P. japonica, and Q. crispula root samples collected in each plot. (XLSX 69.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suetsugu, K., Matsuoka, S., Shutoh, K. et al. Mycorrhizal communities of two closely related species, Pyrola subaphylla and P. japonica, with contrasting degrees of mycoheterotrophy in a sympatric habitat. Mycorrhiza 31, 219–229 (2021). https://doi.org/10.1007/s00572-020-01002-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00572-020-01002-5

Keywords

Navigation