Skip to main content
Log in

Tip-trajectory tracking control of a deployable cable-driven robot via output redefinition

  • Published:
Multibody System Dynamics Aims and scope Submit manuscript

Abstract

Large-scale deployable cable-driven robots face a lack of kinematic precision, and the cable dynamics impose considerable challenges in terms of controller design. The problem’s complexity increases because a deployable robot may not exploit expensive and highly accurate of measurement devices. Thus, it is necessary to efficiently combine the set of measurements available through low-cost sensors to track the end-effector’s position and reduce the oscillations. This paper’s main contribution is to propose a novel feedback method for fusing the vision and joint kinematic sensors for achieving suitable tracking performance. To this end, the dynamic formulation of a large-scale deployable cable-driven robot has been derived considering a lumped mass model for the cables. Based on this model, it is then shown that the stability conditions are satisfied through a suitable combination of sensory data incorporated into the control law. Finally, the performance for the proposed controller has been illustrated using the experimental results on a deployable suspended cable-driven robot showing the effectiveness of the proposed methodology regardless of the underlying system uncertainties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Taghirad, H.: Parallel Robots: Mechanics and Control. Taylor & Francis, London (2012)

    Google Scholar 

  2. Behzadipour, S., Khajepour, A.: A new cable-based parallel robot with three degrees of freedom. Multibody Syst. Dyn. 13(4), 371–383 (2005)

    Article  Google Scholar 

  3. Khalilpour, S., Khorrambakht, R., Taghirad, H., Cardou, P.: Wave based control of a deployable cable driven robot. In: 2018 6th RSI International Conference on Robotics and Mechatronics (IcRoM), pp. 166–171. IEEE Press, New York (2018)

    Chapter  Google Scholar 

  4. Jordan, B.L., Batalin, M.A., Kaiser, W.J.: Nims rd: a rapidly deployable cable based robot. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 144–150. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  5. Borgstrom, P.H., Jordan, B.L., Borgstrom, B.J., Stealey, M.J., Sukhatme, G.S., Batalin, M.A., Kaiser, W.J.: Nims-pl: a cable-driven robot with self-calibration capabilities. IEEE Trans. Robot. 25(5), 1005–1015 (2009)

    Article  Google Scholar 

  6. Bosscher, P., Williams, R.L., Tummino, M.: A concept for rapidly-deployable cable robot search and rescue systems. In: ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, pp. 589–598. American Society of Mechanical Engineers, New York (2005)

    Google Scholar 

  7. Merlet, J.: Marionet, a family of modular wire-driven parallel robots. In: Advances in Robot Kinematics: Motion in Man and Machine, pp. 53–61 (2010)

    Chapter  Google Scholar 

  8. Cheah, C.C., Kawamura, S., Arimoto, S.: Feedback control for robotic manipulator with an uncertain Jacobian matrix. J. Robot. Syst. 16(2), 119–134 (1999)

    Article  Google Scholar 

  9. Cheah, C.C., Hirano, M., Kawamura, S., Arimoto, S.: Approximate Jacobian control for robots with uncertain kinematics and dynamics. IEEE Trans. Robot. Autom. 19(4), 692–702 (2003)

    Article  Google Scholar 

  10. Khalilpour, S., Khorrambakht, R., Harandi, M., Taghirad, H., Cardou, P.: Cascade terminal sliding mode control of a deployable cable driven robot. In: 2019 6th International Conference on Control, Instrumentation and Automation (ICCIA), pp. 1–6. IEEE Press, New York (2019)

    Google Scholar 

  11. Procházka, F., Valášek, M., Šika, Z.: Robust sliding mode control of redundantly actuated parallel mechanisms with respect to geometric imperfections. Multibody Syst. Dyn. 36(3), 221–236 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gorman, J.J., Jablokow, K.W., Cannon, D.J.: The cable array robot: theory and experiment. In: Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No. 01CH37164), vol. 3, pp. 2804–2810. IEEE Press, New York (2001)

    Chapter  Google Scholar 

  13. Oh, S.R., Agrawal, S.K.: Cable suspended planar robots with redundant cables: controllers with positive tensions. IEEE Trans. Robot. 21(3), 457–465 (2005)

    Article  Google Scholar 

  14. Oh, S.R., Agrawal, S.K.: Generation of feasible set points and control of a cable robot. IEEE Trans. Robot. 22(3), 551–558 (2006)

    Article  Google Scholar 

  15. Khalilpour, S., Khorrambakht, R., Taghirad, H., Cardou, P.: Cascade control of a deployable cable–driven robot with elastic cables. IEEE Trans. Syst. Man Cybern. Syst. (2020, submitted)

  16. Begey, J., Cuvillon, L., Lesellier, M., Gouttefarde, M., Gangloff, J.: Dynamic control of parallel robots driven by flexible cables and actuated by position-controlled winches. IEEE Trans. Robot. 35(1), 286–293 (2018)

    Article  Google Scholar 

  17. Diao, X., Ma, O.: Vibration analysis of cable-driven parallel manipulators. Multibody Syst. Dyn. 21(4), 347–360 (2009)

    Article  Google Scholar 

  18. Khalilpour, S., Khorrambakht, R., Taghirad, H., Cardou, P.: Dual space control of a deployable cable driven robot: wave based approach. Int. J. Soc. Robot. Theory Appl. 6(1), 11–19 (2020)

    Google Scholar 

  19. Rushton, M., Khajepour, A.: Transverse vibration control in planar cable-driven robotic manipulators. In: Cable-Driven Parallel Robots, pp. 243–253. Springer, Berlin (2018)

    Chapter  Google Scholar 

  20. de Rijk, R., Rushton, M., Khajepour, A.: Out-of-plane vibration control of a planar cable-driven parallel robot. IEEE/ASME Trans. Mechatron. 23(4), 1684–1692 (2018)

    Article  Google Scholar 

  21. Jamshidifar, H., Khosravani, S., Fidan, B., Khajepour, A.: Vibration decoupled modeling and robust control of redundant cable-driven parallel robots. IEEE/ASME Trans. Mechatron. 23(2), 690–701 (2018)

    Article  Google Scholar 

  22. Babaghasabha, R., Khosravi, M.A., Taghirad, H.D.: Adaptive robust control of fully constrained cable robots: singular perturbation approach. Nonlinear Dyn. 85, 607–620 (2016)

    Article  MathSciNet  Google Scholar 

  23. Caverly, R.J., Forbes, J.R., Mohammadshahi, D.: Dynamic modeling and passivity-based control of a single degree of freedom cable-actuated system. IEEE Trans. Control Syst. Technol. 23(3), 898–909 (2014)

    Article  Google Scholar 

  24. Caverly, R.J., Forbes, J.R.: Dynamic modeling and noncollocated control of a flexible planar cable-driven manipulator. IEEE Trans. Robot. 30(6), 1386–1397 (2014)

    Article  Google Scholar 

  25. Walton, T.S., Polachek, H.: Calculation of transient motion of submerged cables. Math. Comput. 14(69), 27–46 (1960)

    Article  MathSciNet  Google Scholar 

  26. Nagatomi, O., Nakamura, M., Koterayama, W., et al.: Dynamic simulation and field experiment of submarine cable during laying and recovery. In: The Twelfth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers, Mountain View (2002)

    Google Scholar 

  27. Khalilpour, S., Khorrambakht, R., Taghirad, H., Cardou, P.: Robust cascade control of a deployable cable-driven robot. Mech. Syst. Signal Process. 127, 513–530 (2019)

    Article  Google Scholar 

  28. Khalilpour, S., Khorrambakht, R., Bourbour, A., Taghirad, H.: Joint-space position control of a deployable cable driven robot in joint space using force sensors and actuator encoders. Modares Mech. Eng. 19(11), 2615–2625 (2019)

    Google Scholar 

  29. Hosseini, M.I., Harandi, M.J., Seyedi, S.A.K., et al.: Adaptive fast terminal sliding mode control of a suspended cable-driven robot. In: 2019 27th Iranian Conference on Electrical Engineering (ICEE), pp. 985–990. IEEE Press, New York (2019)

    Chapter  Google Scholar 

  30. Damaren, C.J.: Passivity analysis for flexible multilink space manipulators. J. Guid. Control Dyn. 18(2), 272–279 (1995)

    Article  Google Scholar 

  31. Damaren, C.J.: On the dynamics and control of flexible multibody systems with closed loops. Int. J. Robot. Res. 19(3), 238–253 (2000)

    Article  Google Scholar 

  32. Damaren, C.J.: Adaptive control of flexible manipulators carrying large uncertain payloads. J. Robot. Syst. 13(4), 219–228 (1996)

    Article  Google Scholar 

  33. Damaren, C.: Approximate inverse dynamics and passive feedback for flexible manipulators with large payloads. IEEE Trans. Robot. Autom. 12(1), 131–138 (1996)

    Article  Google Scholar 

  34. Spector, V., Flashner, H.: Sensitivity of structural models for noncollocated control systems. J. Dyn. Syst. Meas. Control 111(4), 646–655 (1989)

    Article  Google Scholar 

  35. Spector, V., Flashner, H.: Modeling and design implications of noncollocated control in flexible systems. J. Dyn. Syst. Meas. Control 112(2), 186–193 (1990)

    Article  Google Scholar 

  36. Miu, D.K.: Physical interpretation of transfer function zeros for simple control systems with mechanical flexibilities. J. Dyn. Syst. Meas. Control 113(3), 419–424 (1991)

    Article  Google Scholar 

  37. Wang, D., Vidyasagar, M.: Passive control of a single flexible link. In: Proceedings., IEEE International Conference on Robotics and Automation, pp. 1432–1437. IEEE Press, New York (1990)

    Chapter  Google Scholar 

  38. Pota, H.R., Vidyasagar, M.: Passivity of flexible beam transfer functions with modified outputs. In: Proceedings, 1991 IEEE International Conference on Robotics and Automation, pp. 2826–2831. IEEE Press, New York (1991)

    Chapter  Google Scholar 

  39. Desoer, C.A., Vidyasagar, M.: Feedback Systems: Input-Output Properties, vol. 55. SIAM, Philadelphia (1975)

    MATH  Google Scholar 

  40. Damaren, C.J.: Modal properties and control system design for two-link flexible manipulators. Int. J. Robot. Res. 17(6), 667–678 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate the support from Iranian National Science Foundation (INSF) under grant number 96001803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. D. Taghirad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalilpour, S.A., Khorrambakht, R., Damirchi, H. et al. Tip-trajectory tracking control of a deployable cable-driven robot via output redefinition. Multibody Syst Dyn 52, 31–58 (2021). https://doi.org/10.1007/s11044-020-09761-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11044-020-09761-x

Keywords

Navigation