Skip to main content
Log in

Well-posedness and regularity for fractional damped wave equations

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

In this paper, we study the well-posedness and regularity of mild solutions for a class of time fractional damped wave equations, which the fractional derivatives in time are taken in the sense of Caputo type. A concept of mild solutions is introduced to prove the existence for the linear problem, as well as the regularity of the solution. We also establish a well-posed result for nonlinear problem. By applying finite dimensional approximation method, a compact result of solution operators is presented, following this, an existence criterion shows that the Lipschitz condition or smoothness of nonlinear force functions in some literatures can be removed. As an application, we discuss a case of time fractional telegraph equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Affili, E., Valdinoci, E.: Decay estimates for evolution equations with classical and fractional time-derivatives. J. Differ. Equ. 266(7), 4027–4060 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alaimia, M.R., Tatar, N.-E.: Blow up for the wave equation with a fractional damping. J. Appl. Anal. 11(1), 133–144 (2005)

    Article  MathSciNet  Google Scholar 

  3. Aloui, L., Ibrahim, S., Khenissi, M.: Energy decay for linear dissipative wave equations in exterior domains. J. Differ. Equ. 259(5), 2061–2079 (2015)

    Article  MathSciNet  Google Scholar 

  4. Alvarez, E., Gal, C., Keyantuo, V., Warma, M.: Well-posedness results for a class of semi-linear super-diffusive equations. Nonlinear Anal. 181, 24–61 (2019)

    Article  MathSciNet  Google Scholar 

  5. Beckers, S., Yamamoto, M.: Regularity and unique existence of solution to linear diffusion equation with multiple time-fractional derivatives. In: Bredies, K., Clason, C., Kunisch, K., von Winckel, G. (eds.) Control and Optimization with PDE Constraints. International Series of Numerical Mathematics, vol. 164. Birkhäuser, Basel (2013)

    Google Scholar 

  6. Chen, L.: Nonlinear stochastic time-fractional diffusion equations on \({\mathbb{R}}\): moments, Hölder regularity and intermittency. Tran. Am. Math. Soc. 369(12), 8497–8535 (2017)

    Article  Google Scholar 

  7. Chen, J., Liu, F., Anh, V.: Analytical solution for the time-fractional telegraph equation by the method of separating variables. J. Math. Anal. Appl. 338(2), 1364–1377 (2008)

    Article  MathSciNet  Google Scholar 

  8. Djida, J.D., Fernandez, A., Area, I.: Well-posedness results for fractional semi-linear wave equations. Discrete Contin. Dyn. Syst. Ser. B 25(2), 569–597 (2020)

    MathSciNet  MATH  Google Scholar 

  9. Dong, H., Kim, D.: \(L_p\)-estimates for time fractional parabolic equations in divergence form with measurable coefficients. J. Funct. Anal. 278, 108338 (2020)

    Article  MathSciNet  Google Scholar 

  10. Dong, H., Kim, D.: \(L_p\)-estimates for time fractional parabolic equations with coefficients measurable in time. Adv. Math. 345, 289–345 (2019)

    Article  MathSciNet  Google Scholar 

  11. Fragnelli, G., Mugnai, D.: Stability of solutions for some classes of nonlinear damped wave equations. SIAM J. Control Optim. 47(5), 2520–2539 (2008)

    Article  MathSciNet  Google Scholar 

  12. Giga, Y., Namba, T.: Well-posedness of Hamilton–Jacobi equations with Caputo’s time fractional derivative. Commun. Partial Differ. Equ. 42(7), 1088–1120 (2017)

    Article  MathSciNet  Google Scholar 

  13. Graham, I., Langer, U., Melenk, J., Sini, M. (eds.): Direct and Inverse Problems in Wave Propagation and Applications. Walter de Gruyter, Berlin (2013)

    Google Scholar 

  14. Ikehata, R., Todorova, G., Yordanov, B.: Wave equations with strong damping in Hilbert spaces. J. Differ. Equ. 254(8), 3352–3368 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kim, I., Kim, K.H., Lim, S.: An \(L_q(L_p)\)-theory for the time fractional evolution equations with variable coefficients. Adv. Math. 306, 123–176 (2017)

    Article  MathSciNet  Google Scholar 

  16. Kian, Y., Yamamoto, M.: On existence and uniqueness of solutions for semilinear fractional wave equations. Fract. Calc. Appl. Anal. 20(1), 117–138 (2017)

    Article  MathSciNet  Google Scholar 

  17. Li, L., Liu, J.G., Wang, L.: Cauchy problems for Keller–Segel type time-space fractional diffusion equation. J. Differ. Equ. 265(3), 1044–1096 (2018)

    Article  MathSciNet  Google Scholar 

  18. Lin, C., Nakamura, G.: Unique continuation property for multi-terms time fractional diffusion equations. Math. Ann. 373(3–4), 929–952 (2019)

    Article  MathSciNet  Google Scholar 

  19. Lin, C., Nakamura, G.: Unique continuation property for anomalous slow diffusion equation. Commun. Partial Differ. Equ. 41(5), 749–758 (2016)

    Article  MathSciNet  Google Scholar 

  20. Luchko, Y.: Fractional wave equation and damped waves. J. Math. Phys. 54(3), 031505 (2013)

    Article  MathSciNet  Google Scholar 

  21. Luchko, Y., Mainardi, F.: Fractional diffusion-wave phenomena. In: Tarasov, Vasily E. (ed.) Applications in Physics, Part B, pp. 71–98. De Gruyter, Berlin, Boston (2019)

    Chapter  Google Scholar 

  22. Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  Google Scholar 

  23. Orsingher, E., Beghin, L.: Time-fractional telegraph equations and telegraph process with Brownian time. Probab. Theory Related Fields 128(1), 141–160 (2004)

    Article  MathSciNet  Google Scholar 

  24. Otárola, E., Salgado, A.J.: Regularity of solutions to space-time fractional wave equations: a PDE approach. Fract. Calc. Appl. Anal. 21(5), 1262–1293 (2018)

    Article  MathSciNet  Google Scholar 

  25. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  26. Sakamoto, K., Yamamoto, M.: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems. J. Math. Anal. Appl. 382(1), 426–447 (2011)

    Article  MathSciNet  Google Scholar 

  27. Schneider, W.R., Wyss, W.: Fractional diffusion and wave equations. J. Math. Phys. 30, 134–144 (1989)

    Article  MathSciNet  Google Scholar 

  28. Stojanovic, M., Gorenflo, R.: Nonlinear two term time fractional diffusion wave problem. Nonlinear Anal. RWA 11(5), 3512–3523 (2010)

    Article  MathSciNet  Google Scholar 

  29. Tatar, N.-E.: A blow up result for a fractionally damped wave equation. NoDEA Nonlinear Differ. Equ. Appl. 12(2), 215–226 (2005)

    Article  MathSciNet  Google Scholar 

  30. Vivian, H., Pym, J., Cloud, M.: Applications of Functional Analysis and Operator Theory. Elsevier, Amsterdam (2005)

    MATH  Google Scholar 

  31. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328(2), 1075–1081 (2007)

    Article  MathSciNet  Google Scholar 

  32. Zacher, R.: A De Giorgi–Nash type theorem for time fractional diffusion equations. Math. Ann. 356(1), 99–146 (2013)

    Article  MathSciNet  Google Scholar 

  33. Zhou, Y.: Basic Theory of Fractional Differential Equations. World Scientific, Singapore (2014)

    Book  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the editor and reviewers for their valuable comments. Project supported by the Fundo para o Desenvolvimento das Ciências e da Tecnologia of Macau (Grant No. 0074/2019/A2) and National Natural Science Foundation of China (11671339) (12071396).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Zhou.

Additional information

Communicated by Ansgar Jüngel.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., He, J.W. Well-posedness and regularity for fractional damped wave equations. Monatsh Math 194, 425–458 (2021). https://doi.org/10.1007/s00605-020-01476-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00605-020-01476-7

Keywords

Mathematics Subject Classification

Navigation