Skip to main content
Log in

Investigating Dynamic Thermal Behavior of Continuous Casting of Steel with CONOFFLINE

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

A new model, CONOFFLINE, has been developed to simulate transient thermal behavior of a longitudinal section down a continuous steel slab-casting machine. The model was first verified by comparing its predictions of shrinkage through the strand thickness with transient measurements of roll forces in a thick-slab caster during a series of speed changes. The model was then applied to investigate the evolution of temperature and shell thickness in a typical caster after sudden changes in casting speed. Simple equations are proposed to estimate the settling time of metallurgical length and surface temperature during sudden speed changes for both thin- and thick-slab casters. Finally, the influence of different spray cooling control methods on these behaviors during casting speed changes is investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

c p :

Nominal specific heat

\( c_{\text{p}}^{*} \) :

Effective specific heat, including effect of latent heat

f p :

Mass fraction of phase p = α, γ, δ, s, l (respectively, α-ferrite, austenite, δ-ferrite, solid, and liquid)

f s,cohere :

Minimum solid fraction necessary for strand to be coherent

h sw :

Heat transfer coefficient due to spray cooling

i :

Used for numbering CON1D slices in CONOFFLINE

K :

K-factor” in simple model of shell growth

k :

Thermal conductivity

L :

Thickness of the strand (in the x-direction)

L f :

Latent heat of solidification

L(T):

Length of a temperature dependent material at temperature T

ΔL(T):

Change in length of a temperature dependent material from temperature Tref to temperature T

L x :

Characteristic length in x-direction

L z :

Characteristic length in z-direction

Pe:

Péclet number

Q sw :

Spray water flux (volume of water hitting strand surface per unit area and time)

\( \bar{q}_{\text{m}} \) :

Average heat flux in the mold

q sw :

Heat flux due to spray cooling

s :

Shell thickness

T :

Temperature

\( \hat{T} \) :

Strand temperature predicted by CONOFFLINE

T i :

Temperature of CON1D slice number i

TLE:

Thermal linear expansion

T ref :

Reference temperature used in calculation of TLE

T surf :

Temperature of strand surface

T sw :

Temperature of spray cooling water

t :

Time

\( t_{i}^{0} \) :

Time when CON1D slice number i is at the meniscus

t max :

Estimated upper bound on temperature settling time

v c :

Casting speed

\( v_{{{\text{c}}_{1} }} \) :

Casting speed before a sudden speed change

\( v_{{{\text{c}}_{2} }} \) :

Casting speed after a sudden speed change

v c,final :

Casting speed at the end of a speed change

x :

Distance from inner radius surface

z :

Distance from meniscus

z cohere :

Distance from meniscus where strand is fully coherent

z i :

Distance from meniscus of CON1D slice number i

z ML :

Metallurgical length

ρ :

Density

ρ ref :

Density at reference temperature, used to calculate TLE

ρ(z):

Average density of strand at distance z from the meniscus

τ :

Steel dwell time in the caster

References

  1. J. Sengupta, M.-K. Trinh, D. Currey, and B.G. Thomas: in AISTech - Iron and Steel Technology Conference Proceedings, AIST, Warrendale, PA, 2009, pp. 1177–86.

    Google Scholar 

  2. M. Miyazaki, K. Isobe, and T. Murao: Nippon Steel Tech. Rep., 2013, vol. 104, pp. 48–53.

    Google Scholar 

  3. C.H. Yim, J.K. Park, B.D. You, and S.M. Yang: ISIJ Int., 1996, vol. 36 (Supplement), pp. S231–4.

    Article  Google Scholar 

  4. A. Ghosh: Sadhana, 2001, vol. 26 (1–2), pp. 5–24.

    Article  CAS  Google Scholar 

  5. B. Petrus, K. Zheng, X. Zhou, B.G. Thomas, and J. Bentsman: Metall. Mater. Trans. B, 2011, vol. 42 (1), pp. 87–103.

    Article  CAS  Google Scholar 

  6. R.A. Hardin, K. Liu, C. Beckermann, and A. Kapoor: Metall. Mater. Trans. B, 2003, vol. 34 (3), pp. 297–306.

    Article  Google Scholar 

  7. Z. Chen, J. Bentsman, B.G. Thomas, and A. Matsui: Iron Steel Technol., 2017, vol. 14 (10), pp. 92–103.

    Google Scholar 

  8. Z. Chen, W. Drennan, B.G. Thomas, J. Bentsman, and B.G. Thomas: in 2019 AISTech - Iron and Steel Technology Conference Proceedings, AIST, Warrendale, PA, 2019, pp. 2075–84.

  9. B. Petrus: PhD Thesis, University of Illinois at Urbana-Champaign, 2014.

  10. J.K. Brimacombe and K. Sorimachi: Metall. Trans. B, 1977, vol. 8 (2), pp. 489–505.

    Article  Google Scholar 

  11. A. Scholes, B. Patrick, and B. Barber: Ironmak. Steelmak., 2005, vol. 32 (2), pp. 101–8.

    Article  CAS  Google Scholar 

  12. Z. Chen, H. Olia, B. Petrus, M. Rembold, J. Bentsman, and B.G. Thomas: in Materials Processing Fundamentals 2019, The Minerals, Metals &Materials Series, 2019, pp. 23–35.

  13. B. Petrus, D. Harnmon, M. Miller, B. Williams, A. Zewe, Z. Chen, J. Bentsman, B.G. Thomas, D. Hammon, M. Miller, B. Williams, A. Zewe, Z. Chen, J. Bentsman, and B.G. Thomas: Iron Steel Technol., 2015, vol. 12 (12), pp. 58–66.

    Google Scholar 

  14. E. Mizikar: Trans. Metall. Soc. AIME., 1967, vol. 239 (11), pp. 1747–53.

    CAS  Google Scholar 

  15. J. Lait, J. Brimacombe, and F. Weinberg: Ironmak. Steelmak., 1974, vol. 1 (2), pp. 90–7.

    Google Scholar 

  16. H. Shen, R.A. Hardin, R. Maenzie, and C. Beckermann: J. Mater. Sci. Technol., 2002, vol. 18 (4), pp. 311–4.

    CAS  Google Scholar 

  17. L.C. Hibbeler, K. Xu, B.G. Thomas, S. Koric, and C. Spangler: Iron Steel Technol., 2009, vol. 6 (7), pp. 60–73.

    Google Scholar 

  18. Y.A. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34 (5), pp. 685–705.

    Article  Google Scholar 

  19. S. Louhenkilpi, E. Laitinen, and R. Nieminen: Metall. Mater. Trans. B, 1993, vol. 24 (4), pp. 685–93.

    Article  Google Scholar 

  20. T. Räisänen, S. Louhenkilpi, T. Hätönen, J. Toivanen, J. Laine, and M. Kekäläinen: in European Congress on Computational Methods in Applied Sciences and Engineering, 2004, pp. 1–11.

  21. S. Louhenkilpi, M. Mäkinen, S. Vapalahti, T. Räisänen, and J. Laine: Mater. Sci. Eng. A, 2005, vol. 413–414, pp. 135–8.

    Article  Google Scholar 

  22. J. Ma, Z. Xie, and G. Jia: ISIJ Int., 2008, vol. 48 (12), pp. 1722–7.

    Article  CAS  Google Scholar 

  23. B. Petrus, Z. Chen, J. Bentsman, and B.G. Thomas: IEEE Trans. Automat. Contr., 2018, vol. 63 (4), pp. 1090–6.

    Article  Google Scholar 

  24. N. Gregurich, G. Flick, R. Moravec, and K. Blazek: Iron Steel Technol., 2012, vol. 9 (12), p. 62.

  25. Y.M. Won, H.N. Han, T. Yeo, and K.H. Oh: ISIJ Int., 2008, vol. 40 (2), pp. 129–36.

    Article  Google Scholar 

  26. P. Duvvuri, B. Petrus, and B.G. Thomas: in AISTech - Iron and Steel Technology Conference Proceedings, AIST, Warrendale, PA, 2014, pp. 2881–93.

    Google Scholar 

  27. T. Nozaki, J. Matsuno, K. Murata, H. Ooi, and M. Kodama: Trans. Iron Steel Inst. Jpn., 1978, vol. 18 (6), pp. 330–8.

    Article  CAS  Google Scholar 

  28. G.F. Franklin, J.D. Powell, and M.L. Workman: Digital Control of Dynamic Systems, Addison-Wesley, Boston, 1997.

    Google Scholar 

  29. K. Harste: Doctoral dissertation, Technical University of Clausthal, 1989.

  30. A. Jablonka, K. Harste, and K. Schwerdtfeger: Steel Res. Int., 1991, vol. 62 (1), pp. 24–33.

    Article  CAS  Google Scholar 

  31. I. Jimbo and A.W. Cramb: Metall. Trans. B, 1993, vol. 24 (1), pp. 5–10.

    Article  Google Scholar 

  32. J.A. Dantzig and C.L. Tucker: Modeling in Materials Processing, Cambridge University Press, New York, 2001.

    Book  Google Scholar 

  33. C. Cicutti, M. Valdez, T. Perez, G. Gresia, W. Balante, and J. Petroni: in Proceedings of the 85th Steelmaking Conference, Iron & Steel Soc., Warrendale, PA, 2002, pp. 97–107.

  34. B.G. Thomas: in Modeling for Casting and Solidification Processing, Kuang-Oscar Yu, ed., CRC Press, New York, 2001, Ch. 15, pp. 499–540.

Download references

Acknowledgments

The authors are grateful for support of this work by the member companies of the Continuous Casting Center at Colorado School of Mines, the Continuous Casting Consortium at University of Illinois at Urbana-Champaign, and the National Science Foundation GOALI program (Grant No. CMMI 1300907).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian G. Thomas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 14, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrus, B., Chen, Z., Bentsman, J. et al. Investigating Dynamic Thermal Behavior of Continuous Casting of Steel with CONOFFLINE. Metall Mater Trans B 51, 2917–2934 (2020). https://doi.org/10.1007/s11663-020-01941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01941-6

Navigation