Skip to main content
Log in

Compositional Dependence of Thermal Conductivity of Molten Cu-Fe Alloy at Low Fe Contents

  • Communication
  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

The compositional dependence of the thermal conductivity of a molten copper-iron (Cu-Fe) alloy at low Fe contents was measured herein by combining a periodic laser heating method and an electromagnetic levitator (EML) with a static magnetic field that can suppress the melt convection in the molten sample. The measured thermal conductivities markedly decreased with the composition of Fe up to 20 at. pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1. Y. Nakagawa: Acta Metall., 1958, vol. 6, pp. 704-711.

    CAS  Google Scholar 

  2. 2. R. Busch, F. Gärtner, C. Borchers, P. Haasen and R. Bormann: Acta Mater., 1996, vol. 44, pp. 2567-2579.

    CAS  Google Scholar 

  3. 3. X. Song, S. W. Mahon, R. F. Cochrane, B. J. Hickey and M. A. Howson: Mater. Lett., 1997, vol. 31, pp. 261-266.

    CAS  Google Scholar 

  4. 4. W. Yang, S. H. Chen, H. Yu, S. Li, F. Liu and G. C. Yang: Appl. Phys. A, 2012, vol. 109, pp. 665-671.

    CAS  Google Scholar 

  5. 5. J. Wecker, R. Helmolt, L. Schultz and K. Samwer: Appl. Phys. Lett., 1993, vol. 62, pp. 1985-1987.

    CAS  Google Scholar 

  6. 6. A. Munitz and R. Abbaschian: J. Mater. Sci., 1998, vol. 33, pp. 3639-3649.

    CAS  Google Scholar 

  7. 7. O. E. Jegede, R. F. Cochrane and A. M. Mullis: J. Mater. Sci., 2018, vol. 53, pp. 11749-11764.

    CAS  Google Scholar 

  8. 8. S. Liu, J. Jie, Z. Guo, G. Yin, T. Wang and T. Li: J. Alloys Compd., 2018, vol. 742, pp. 99-106.

    CAS  Google Scholar 

  9. 9. S. P. Elder, A. Munitz and G. J. Abbaschian: Mater. Sci. Forum, 1989, vol. 50, pp. 137-150.

    Google Scholar 

  10. 10. A. Munitz and R. Abbaschian: Metall. Mater. Trans. A, 1996, vol. 27, pp. 4049-4059.

    CAS  Google Scholar 

  11. 11. I. Yamauchi, N. Ueno, M. Shimaoka and I. Ohnaka: J. Mater. Sci., 1998, vol. 33, pp. 371-378.

    CAS  Google Scholar 

  12. 12. M. B. Robinson, D. Li, T. J. Rathz and G. Williams: J. Mater. Sci., 1999, vol. 34, pp. 3747-3753.

    CAS  Google Scholar 

  13. 13. A. Munitz, A. Venkert, P. Landau, M. J. Kaufman and R. Abbaschian: J. Mater. Sci., 2012, vol. 47, pp. 7955-7970.

    CAS  Google Scholar 

  14. 14. J. Zhang, X. Cui, Y. Yang and Y. Wang: Metall. Mater. Trans. A, 2013, vol. 44, pp. 5544-5548.

    Google Scholar 

  15. 15. S. B. Luo, W. L. Wang, J. Chang, Z. C. Xia and B. Wei: Acta Mater., 2014, vol. 69, pp. 355-364.

    CAS  Google Scholar 

  16. 16. J. Zhang, X. Cui and Y. Wang: Int. J. Cast Met. Res., 2018, vol. 31, pp. 87-92.

    CAS  Google Scholar 

  17. 17. M. Kolbe and J. R. Gao: Mater. Sci. Eng. A, 2005, vol. 413-414, pp. 509-513.

    Google Scholar 

  18. 18. Y. K. Zhang, J. Gao, D. Nagamatsu, T. Fukuda, H. Yasuda, M. Kolbe and J. C. He: Scripta Mater., 2008, vol. 59, pp. 1002-1005.

    CAS  Google Scholar 

  19. 19. J. Gao, Y. K. Zhang, T. Fukuda, H. Yasuda, M. Kolbe and J. He: J. Phys. Conf. Ser., 2009, vol. 144, 012117.

    Google Scholar 

  20. 20. K. Sugioka, T. Inoue, T. Kitahara, R. Kurosawa, M. Kubo, T. Tsukada, M. Uchikoshi and H. Fukuyama: Metall. Mater. Trans. B, 2014, vol. 45, pp. 1439-1445.

    Google Scholar 

  21. 21. T. Kitahara, K. Tanada, S. Ueno, K. Sugioka, M. Kubo, T. Tsukada, M. Uchikoshi and H. Fukuyama: Metall. Mater. Trans. B, 2015, vol. 46, pp. 2706-2712.

    Google Scholar 

  22. 22. D. Zhao and J. Gao: Philos. Trans. Royal Soc. A, 2019, vol. 377, 20180207.

    CAS  Google Scholar 

  23. 23. E. Shoji, S. Isogai, R. Suzuki, M. Kubo, T. Tsukada, T. Kai, T. Shinohara, Y. Matsumoto and H. Fukuyama: Scripta Mater., 2020, vol. 175, pp. 29-32.

    CAS  Google Scholar 

  24. 24. R. Kurosawa, T. Inoue, Y. Baba, K. Sugioka, M. Kubo, T. Tsukada and H. Fukuyama: Meas. Sci. Technol., 2012, vol. 24, 015603.

    Google Scholar 

  25. 25. H. Kobatake, H. Khosroabadi and H. Fukuyama: Metall. Mater. Trans. A, 2012, vol. 43, pp. 2466-2472.

    Google Scholar 

  26. 26. M. Watanabe, M. Adachi and H. Fukuyama: J. Mater. Sci., 2017, vol. 52, pp. 9850-9858.

    CAS  Google Scholar 

  27. 27. M. Watanabe, J. Takano, M. Adachi, M. Uchikoshi and H. Fukuyama: J. Chem. Thermodyn., 2018, vol. 121, pp. 145-152.

    CAS  Google Scholar 

  28. 28. S. Ueno, Y. Nakamura, K. Sugioka, M. Kubo, T. Tsukada, M. Uchikoshi and H. Fukuyama: Int. J. Thermophys., 2017, vol. 38, 16.

    Google Scholar 

  29. 29. E. Shoji, R. Takahashi, S. Isogai, N. Ito, M. Kubo, T. Tsukada and H. Fukuyama: Metall. Mater. Trans. B, 2019, vol. 50, pp. 2454-2458.

    Google Scholar 

  30. 30. D. B. Smith and J. Chipman: JOM, 1952, vol. 4, pp. 643-644.

    CAS  Google Scholar 

  31. 31. T. Mori, K. Fujimura, T. Higashi and H. Yoshimoto: Tetsu-to-Hagane, 1971, vol. 57, pp. 1198-1212.

    CAS  Google Scholar 

  32. 32. W. Dokko and R. G. Bautista: Metall. Trans. B, 1979, vol. 10, pp. 450-453.

    Google Scholar 

  33. 33. K. Nagata, T. Nagane and M. Susa: ISIJ Int., 1997, vol. 37, pp. 399-403.

    CAS  Google Scholar 

  34. 34. H. Watanabe, M. Susa and K. Nagata: Metall. Mater. Trans. A, 1997, vol. 28, pp. 2507-2513.

    CAS  Google Scholar 

  35. 35. C. Cagran and G. Pottlacher: J. Non-Cryst. Solids, 2007, vol. 353, pp. 3582-3586.

    CAS  Google Scholar 

  36. 36. H. Watanabe, M. Susa, H. Fukuyama and K. Nagata: Int. J. Thermophys., 2003, vol. 24, pp. 1105-1120.

    CAS  Google Scholar 

  37. 37. H. Watanabe, M. Susa, H. Fukuyama and K. Nagata: Int. J. Thermophys., 2003, vol. 24, pp. 473-488.

    CAS  Google Scholar 

  38. 38. G. Pottlacher, K. Boboridis, C. Cagran, T. Hüpf, A. Seifter and B. Wilthan: AIP Conf. Proc., 2013, vol. 1552, pp. 704-709.

    CAS  Google Scholar 

  39. 39. K. C. Mills, B. J. Monaghan and B. J. Keene: Int. Mater. Rev., 1996, vol. 41, pp. 209-242.

    CAS  Google Scholar 

  40. 40. G. Pottlacher: J. Non-Cryst. Solids, 1999, vol. 250, pp. 177-181.

    Google Scholar 

  41. 41. T. Nishi, H. Shibata, Y. Waseda and H. Ohta: Metall. Mater. Trans. A, 2003, vol. 34, pp. 2801-2807.

    CAS  Google Scholar 

  42. 42. T. Hüpf, C. Cagran and G. Pottlacher: EPJ Web of Conferences, 2011, vol. 15, 01018.

    Google Scholar 

  43. 43. Y. Baba, T. Inoue, K. Sugioka, H. Kobatake, H. Fukuyama, M. Kubo and T. Tsukada: Meas. Sci. Technol., 2012, vol. 23, 045103.

    Google Scholar 

  44. Sugie K, Kobatake H, Uchikoshi M, Isshiki M, Sugioka K, Tsukada T, Fukuyama H (2011) Jpn J Appl Phys 50:11

    Google Scholar 

  45. 45. M. Watanabe, M. Adachi, M. Uchikoshi and H. Fukuyama: Metall. Mater. Trans. A, 2019, vol. 50, pp. 3295-3300.

    Google Scholar 

  46. 46. Y. Nakamura, R. Takahashi, E. Shoji, M. Kubo, T. Tsukada, M. Uchikoshi and H. Fukuyama: Metall. Mater. Trans. B, 2017, vol. 48, pp. 3213-3218.

    Google Scholar 

  47. 47. T. Tsukada, H. Fukuyama and H. Kobatake: Int. J. Heat Mass Transf., 2007, vol. 50, pp. 3054-3061.

    Google Scholar 

  48. 48. H. Fukuyama, H. Kobatake, K. Takahashi, I. Minato, T. Tsukada and S. Awaji: Meas. Sci. Technol., 2007, vol. 18, p. 2059.

    CAS  Google Scholar 

  49. 49. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada and S. Awaji: Appl. Phys. Lett., 2007, vol. 90, 094102.

    Google Scholar 

  50. 50. H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada and S. Awaji: J. Appl. Phys., 2008, vol. 104, 054901.

    Google Scholar 

  51. 51. H. Fukuyama, K. Takahashi, S. Sakashita, H. Kobatake, T. Tsukada and S. Awaji: ISIJ Int., 2009, vol. 49, pp. 1436-1442.

    CAS  Google Scholar 

  52. 52. H. Kobatake, H. Fukuyama, T. Tsukada and S. Awaji: Meas. Sci. Technol., 2009, vol. 21, 025901.

    Google Scholar 

  53. 53. K. Sugioka, T. Tsukada, H. Fukuyama, H. Kobatake and S. Awaji: Int. J. Heat Mass Transf., 2010, vol. 53, pp. 4228-4232.

    CAS  Google Scholar 

  54. 54. M. A. Turchanin, P. G. Agraval and I. V. Nikolaenko: J. Phase Equilib., 2003, vol. 24, pp. 307-319.

    CAS  Google Scholar 

  55. 55. S. Watanabe and T. Saito: Trans. Jpn. Inst. Met., 1972, vol. 13, pp. 186-191.

    Google Scholar 

  56. 56. M. J. Assael, A. E. Kalyva, K. D. Antoniadis, R. M. Banish, I. Egry, J. Wu, E. Kaschnitz and W. A. Wakeham: J. Phys. Chem. Ref. Data, 2010, vol. 39, 033105.

    Google Scholar 

  57. 57. G. Wilde: J. Non-Cryst. Solids, 2002, vol. 307-310, pp. 853-862.

    Google Scholar 

  58. 58. C. Cagran, B. Wilthan and G. Pottlacher: Thermochim. Acta, 2006, vol. 445, pp. 104-110.

    CAS  Google Scholar 

  59. 59. T. Tsukada, K. Sugioka, T. Tsutsumino, H. Fukuyama and H. Kobatake: Int. J. Heat Mass Transf., 2009, vol. 52, pp. 5152-5157.

    CAS  Google Scholar 

  60. 60. Y. Baba, K. Sugioka, M. Kubo, T. Tsukada, K. Sugie, H. Kobatake and H. Fukuyama: J. Chem. Eng. Jpn., 2011, vol. 44, pp. 321-327.

    CAS  Google Scholar 

  61. 61. P. Terzieff and J. G. Gasser: J. Phys.: Condens. Matter, 1996, vol. 8, pp. 7041-7048.

    CAS  Google Scholar 

Download references

This study was supported by JSPS Grant-in-Aid for Scientific Research (B) 19H02493 and the Iron and Steel Institute of Japan (ISIJ) Research Promotion Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eita Shoji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted June 18, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoji, E., Ito, N., Kubo, M. et al. Compositional Dependence of Thermal Conductivity of Molten Cu-Fe Alloy at Low Fe Contents. Metall Mater Trans B 51, 2504–2509 (2020). https://doi.org/10.1007/s11663-020-01965-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-020-01965-y

Navigation