Skip to main content
Log in

Postural control in paw distance after labyrinthectomy-induced vestibular imbalance

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

Balance control is accomplished by the anatomical link which provides the neural information for the coordination of skeletal muscles. However, there are few experimental proofs to directly show the neuroanatomical connection. Here, we examined the behavioral alterations by constructing an animal model with chemically induced unilateral labyrinthectomy (UL). In the experiment using rats (26 for UL, 14 for volume cavity, 355–498 g, male), the models were initially evaluated by the rota-rod (RR) test (21/26, 80.8%) and ocular displacement (23/26, 88.5%). The duration on the rolling rod decreased from 234.71 ± 64.25 s (4th trial before UL) to 11.81 ± 17.94 s (1st trial after UL). Also, the ocular skewed deviation (OSD) was observed in the model with left (5.79 ± 3.06°) and right lesion (3.74 ± 2.69°). Paw distance (PW) was separated as the front (FPW) and the hind side (HPW), and the relative changes of HPW (1.71 ± 1.20 cm) was larger than those of FPW (1.39 ± 1.06 cm), providing a statistical significance (p = 1.51 × 10−4, t test). Moreover, the results of the RR tests matched to those of the changing rates (18/21, 85.7%), and the changes (16/18, 88.9%) were dominantly observed in HPW (in FPW, 2/18, 11.1%). Current results indicated that the UL directly affected the changes in HPW more than those in FPW. In conclusion, the missing neural information from the peripheral vestibular system caused the abnormal posture in HPW, and the postural instability might reduce the performance during the voluntary movement shown in the RR test, identifying the relation between the walking imbalance and the unstable posture in PW.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Claret CR, Herget GW, Kouba L, Wiest D, Adler J, Tscharner V, Stieglitzz T, Pasluosta C (2019) Neuromuscular adaptations and sensorimotor integration following a unilateral transfemoral amputation. J Neuroeng Rehabil 16(1):115. https://doi.org/10.1186/s12984-019-0586-9

    Article  PubMed  PubMed Central  Google Scholar 

  2. Kim G, Kim K-S, Lee S (2017) The integration of neural information by a passive kinetic stimulus and galvanic vestibular stimulation in the lateral vestibular nucleus. Med Biol Eng Comput 55(9):1621–1633

    Article  PubMed  Google Scholar 

  3. Appiah-Kubi KO, Wright WG (2019) Vestibular training promotes adaptation of multisensory integration in postural control. Gait Posture 73:215–220

    Article  CAS  PubMed  Google Scholar 

  4. Paulus WM, Straube A, Brandt T (1984) Visual stabilization of posture. Physiological stimulus characteristics and clinical aspects. Brain 107(Pt. 4):1143–1163

    Article  PubMed  Google Scholar 

  5. Simoneau M, Teasdale N, Bourdin C, Fleury M, Nougier V (1999) Aging and postural control: postural perturbations caused by changing the visual anchor. J Am Geriatr Soc 47(2):235–240

    Article  CAS  PubMed  Google Scholar 

  6. Berela AMF, Caporicci S, de Freitas PB, Jeka JJ, Barela JA (2018) Light touch compensates peripheral somatosensory degradation in postural control of older adults. Hum Mov Sci 60:122–130

    Article  Google Scholar 

  7. Lhomond O, Teasdale N, Simoneau M, Mouchnino L (2016) Neural consequences of increasing body weight: evidence from somatosensory evoked potential and the frequency-specificity of brain oscillations. Front Hum Neurosci 10:318. https://doi.org/10.3389/fnhum.2016.00318

    Article  PubMed  PubMed Central  Google Scholar 

  8. Wallace JW, Rasman BG, Dalton BH (2018) Vestibular-evoked responses indicate a functional role for intrinsic foot muscles during standing balance. Neurosci. 377:150–160

    Article  CAS  Google Scholar 

  9. Mergner T, Schweigart G, Fennell L, Maurer C (2009) Posture control in vestibular-loss patients. Ann N Y Acad Sci 1164:206–215

  10. Waterston JA, Barnes GR (1992) Visual-vestibular interaction during head-free pursuit of pseudorandom target motion in man. J Vestib Res 2(1):71–88

    CAS  PubMed  Google Scholar 

  11. Horak FB (2009) Postural compensation for vestibular loss. Ann N Y Acad Sci 1164:76–81

    Article  PubMed  PubMed Central  Google Scholar 

  12. Curthoys IS, Halmagyi GM (1995) Vestibular compensation: a review of the oculomotor, neural and clinical consequences of lateral vestibular loss. J Vestib Res 5(2):67–107

    Article  CAS  PubMed  Google Scholar 

  13. Manzari L, Burgess AM, MacDougall HG, Curthoys IS (2013) Vestibular function after vestibular neuritis. Int J Audiol 52(10):713–718

    Article  CAS  PubMed  Google Scholar 

  14. Peterka RJ, Statler KD, Wrisley DM, Horak FB (2011) Postural compensation for unilateral vestibular loss. Front Neurol 2:57. https://doi.org/10.3389/fneur.2011.00057

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hamm RJ, Pike BR, O’Dell DM, Lyeth BG, Jenkins LW (1994) The rotarod test: an evaluation of its effectiveness in assessing motor deficits following brain injury. J Neurotrauma 11(2):187–196

    Article  CAS  PubMed  Google Scholar 

  16. Jadhav RS, Ahmed L, Swamy PL, Sanaullah S (2013) Neuroprotective effects of polyhydroxy pregnane glycoside isolated from Wattakaka volubilis (L.f.) strapf. After middle cerebral artery occlusion and reperfusion in rats. Brain Res 1515:78–87

    Article  CAS  PubMed  Google Scholar 

  17. Chaniary KD, Baron MS, Rice AC, Wetzel PA, Ramakrishnan V, Shapiro SM (2009) Quantification of gait in dystonic Gunn rats. J Neurosci Methods 180(2):273–277

    Article  PubMed  Google Scholar 

  18. Macpherson JM (1994) Changes in a postural strategy with inter-paw distance. J Neurophysiol 71(3):931–940

    Article  CAS  PubMed  Google Scholar 

  19. Honeycutt CF, Gottschall JS, Nicholas TR (2009) Electromyographic responses from the hindlimb muscles of the decerebrate cat to horizontal support surface perturbations. J Neurophysiol 101(6):2751–2761

    Article  PubMed  PubMed Central  Google Scholar 

  20. Giszter SF, Davies MR, Graziani V (2007) Motor strategies used by rats spinalized at birth to maintain stance in response to imposed perturbations. J Neurophysiol 97(4):2663–2675

    Article  PubMed  PubMed Central  Google Scholar 

  21. Alford EK, Roy RR, Hodgson JA, Edgerton VR (1987) Electromyography of rat soleus, medial gastrocnemius, and tibialis anterior during hind limb suspension. Exp Neurol 96(3):635–649

    Article  CAS  PubMed  Google Scholar 

  22. Tan U (1985) Relationships between head skill and the excitability of motoneurons innervating the postural soleus muscle in human subjects. Int J Neurosci 26(3–4):289–300

    Article  CAS  PubMed  Google Scholar 

  23. Kasri M, Picquet F, Falempin M (2004) Effects of unilateral and bilateral labyrinthectomy on rat postural muscle properties: the soleus. Exp Neurol 185(1):143–153

    Article  CAS  PubMed  Google Scholar 

  24. Dakin CJ, Héroux ME, Luu BL, Inglis JT, Blouin JS (2016) Vestibular contribution to balance control in the medial gastrocnemius and soleus. J Neurophysiol 115(3):1289–1297

    Article  PubMed  Google Scholar 

  25. Loram ID, Maganaris CN, Lakie M (2005) Human postural sway results from frequent, ballistic bias impulses by soleus and gastrocnemius. J Physiol 564(Pt.1):295–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Héroux ME, Dakin CJ, Luu BL, Inglis JT, Blouin JS (2014) Absence of lateral gastrocnemius activity and differential motor unit behavior in soleus and medial gastrocnemius during standing balance. J Appl Physiol 116(2):140–148

    Article  PubMed  Google Scholar 

  27. Vieria TM, Loram ID, Muceli S, Merletti R, Farina D (2012) Recruitment of motor units in the medial gastrocnemius muscle during human quiet standing: is recruitment intermittent? What triggers recruitment? J Neurophysiol 107(2):666–676

    Article  Google Scholar 

  28. Hawes ML, Kennedy W, O’Callaghan MW, Thurberg BL (2007) Differential muscular glycogen clearance after enzyme replacement therapy in a mouse model of Pompe disease. Mol Genet Metab 91(4):343–351

    Article  CAS  PubMed  Google Scholar 

  29. Murray AJ, Croce K, Belton T, Akay T, Jessell TM (2018) Balance control mediated by vestibular circuits directing limb extension or antagonist muscle co-activation. Cell Rep 22(5):1325–1338

    Article  CAS  PubMed  Google Scholar 

  30. Domen K, Kawaishi Y (2016) The relationship between dynamic balancing ability and posture-related modulation of the soleus H-reflex. J Electromyogr Kinesiol 26:120–124

    Article  PubMed  Google Scholar 

  31. Angulo-Kinzler RM, Mynark RG, Koceja DM (1998) Soleus H-reflex gain in elderly and young adults: modulation due to body position. J Gerontol A Biol Sci Med Sci 53(2):M120–M125

    Article  CAS  PubMed  Google Scholar 

  32. Earles DR, Koceja DM, Shively CW (2000) Environmental changes in soleus H-reflex excitability in young and elderly subjects. Int J Neurosci 105(1–4):1–13

    Article  CAS  PubMed  Google Scholar 

  33. Fukunaga T, Roy RR, Shellock FG, Hodgson JA, Day MK, Lee PL, Kwong-Fu H, Edgerton VR (1992) Physiological cross-sectional area of human leg muscles based on magnetic resonance imaging. J Orthop Res 10(6):928–934

    Article  CAS  PubMed  Google Scholar 

  34. Hoy MG, Zajac FE, Gordon ME (1990) A musculoskeletal model of the human lower extremity: the effect of muscle, tendon, and moment arm on the moment-angle relationship of musculotendon actuators at the hip, knee, and ankle. J Biomech 23(2):157–169

    Article  CAS  PubMed  Google Scholar 

  35. Guthrie ONW (2008) Aminoglycoside induced ototoxicity. Toxicol. 249(2):91–96

    Article  Google Scholar 

  36. Yazdanshenas H, Ashouri A, Kaufman G (2016) Neurovestibular compensation following ototoxic lesion and labyrinthectomy. Intern Arch Otorhinolaryngol 20(2):114–123

    Article  Google Scholar 

  37. Takumida M, Anniko M (2004) Localization of endotoxin in the inner ear following inoculation into the middle ear. Acta Otolaryngol 124(7):772–777

    Article  CAS  PubMed  Google Scholar 

  38. Schoo DP, Tan GX, Ehrenburg MR, Pross SE, Ward BK, Carey JP (2017) Intratympanic (IT) therapies for Menière's disease: some consensus among the confusion. Curr Otorhinolaryngol Rep 5(2):132–141

  39. Vignaux G, Chabbert C, Gaboyard-Niay S, Travo C, Machado ML, Denise P, Comoz F, Hitier M, Landemore G, Philoxène B, Besnard S (2012) Evaluation of the chemical model of vestibular lesions induced by arsanilate in rats. Toxicol Appl Pharmacol 258(1):61–71

  40. Zhang Y, Zhang R, Dai C, Steyger PS, Yu Y (2010) Comparison of gentamicin distribution in the inner ear following administration via the endolymphatic sac or round window. Laryngoscope 120(10):2054–2060

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Plontke SK, Mynatt R, Gill RM, Borgmann S, Salt AN (2007) Concentration gradient along the scala tympani after local application of gentamicin to the round window membrane. Laryngoscope 117(7):1191–1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wu ML, Tsai WJ, Ger J, Deng JF (2003) Clinical experience of acute ferric chloride poisoning. Vet Hum Toxicol 45(5):243–246

    CAS  PubMed  Google Scholar 

  43. Menendez JM, Abramson L, Vera R, Duza G, Palermo M (2015) Total gastrectomy due to ferric chloride intoxication. Acta Gastroenterol Latinoam 45(3):212–216

    PubMed  Google Scholar 

Download references

Funding

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded partially by the Ministry of Education (2018R1A6A1A03025523 & 2019R1I1A1A01041450).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyutae Kim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, G., Nguyen, N. & Kim, KS. Postural control in paw distance after labyrinthectomy-induced vestibular imbalance. Med Biol Eng Comput 58, 3039–3047 (2020). https://doi.org/10.1007/s11517-020-02276-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-020-02276-9

Keywords

Navigation