Skip to main content
Log in

Zn(OH)F Nanorods for Highly Sensitive NO2 Gas Sensor Applications

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

In this study, Zn(OH)F nanorods were synthesized via a microwave-assisted hydrothermal process and employed for NO2 gas sensor, for the first time. Without adding NH4F in the synthesis process, caltrop-like ZnO structure was formed. The characteristics of Zn(OH)F nanorods were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS), and compared to those of caltrop-like ZnO. Additionally, the Zn(OH)F nanorods were further systematically studied by annealing them at 250, 350, and 450 °C to examine thermal stability. The Zn(OH)F nanorods start to transform after annealing at 350 °C. The sensor based on the Zn(OH)F nanorods showed very high response of 63.4 toward 1.3 ppm of NO2 gas at 100 °C, which is 8.6 times higher than the response of the sensor based on the caltrop-like ZnO. In addition, the sensor based on Zn(OH)F nanorods showed an excellent selectivity toward H2 (5 ppm), C2H5OH (10.6 ppm), NH3 (10.6 ppm), C6H5CH3 (36.2 ppm), and CH3COCH3 (2.8 ppm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. T. Chen et al., ACS Appl. Nano Mater. 3, 6440 (2020).

    Article  Google Scholar 

  2. R. Souissi et al., Sens. Actuators B 319, 128280 (2020).

    Article  Google Scholar 

  3. T-J. Hsueh, C-H. Peng and W-S. Chen, Sens. Actuators B 304, 127319 (2020).

    Article  Google Scholar 

  4. W. Du et al., J. Alloys Compd. 834, 155209 (2020).

    Article  Google Scholar 

  5. Z. Liu et al., Sens. Actuators B 308, 127650 (2020).

    Article  Google Scholar 

  6. P. S. Shewale and K-S. Yun, J. Alloys Compd. 837, 155527 (2020).

    Article  Google Scholar 

  7. S. Agarwal et al., Sens. Actuators B 292, 24 (2019).

    Article  Google Scholar 

  8. H-Y. Lee, Y-C. Heish and C-T. Lee, J. Alloys Compd. 773, 950 (2019).

    Article  Google Scholar 

  9. J. Wang et al., J. Hazard. Mater. 381, 120919 (2020).

    Article  Google Scholar 

  10. S. Wan et al., Adv. Mater. 29, 1700286 (2017).

    Article  Google Scholar 

  11. H. Yang et al., J. Hazard. Mater. 333, 250 (2017).

    Article  Google Scholar 

  12. Q. Wang et al., J. Mater. Chem. A 7, 14180 (2019).

    Article  Google Scholar 

  13. Q-L. Huang et al., Cryst. Growth Des. 8, 1412 (2008).

    Article  Google Scholar 

  14. S. Nundy et al., Ceram. Int. 46, 5706 (2020).

    Article  Google Scholar 

  15. J-K. Song et al., Nanoscale Res. Lett. 4, 1512 (2009).

    Article  ADS  Google Scholar 

  16. L. Wu et al., Eur. J. Inorg. Chem. 2009, 2897 (2009).

    Article  Google Scholar 

  17. J. Jiang, Y. Li, S. Tan and Z. Huang, Mater. Lett. 64, 2191 (2010).

    Article  Google Scholar 

  18. D. I. Son et al., Nat. Nanotechnol. 7, 465 (2012).

    Article  ADS  Google Scholar 

  19. F. Xu, L Sun, M. Dai and Y. Lu, J. Phys. Chem. C 114, 15377 (2010).

    Article  Google Scholar 

  20. S. Lepoutre et al., J. Mater. Chem. 20, 537 (2010).

    Article  Google Scholar 

  21. P. Sharma et al., Nat. Mater. 2, 673 (2003).

    Article  ADS  Google Scholar 

  22. S. Sepulveda-Guzman et al., Mater. Chem. Phys. 115, 172 (2009).

    Article  Google Scholar 

  23. M. Wang, L. Jiang, E. J. Kim and S. H. Hahn, RSC Adv. 5, 87496 (2015).

    Article  Google Scholar 

  24. J-H. Park and K-H. Kin, Sens. Actuators B 56, 50 (1999).

    Article  Google Scholar 

  25. F-H. Zhang et al., J. Alloys Compd. 805, 180 (2019).

    Article  Google Scholar 

  26. C. Zou, F. Liang and S. Xue, Appl. Surf. Sci. 353, 1061 (2015).

    Article  ADS  Google Scholar 

  27. D. Barreca et al., Sens. Actuators B 160, 79 (2011).

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korea Basic Science Institute (KBSI) National Research Facilities & Equipment Center (NFEC) grant funded by the Korea government (Ministry of Education) (No. 2019R1A6C1030010). Also, J.-S. Park was partially supported by Project No. P0006858 of International Collaboration Program by KIAT and MOTIE in Rep. Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Joon-Shik Park or Hoo-Jeong Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eom, Ty., Park, JS. & Lee, HJ. Zn(OH)F Nanorods for Highly Sensitive NO2 Gas Sensor Applications. J. Korean Phys. Soc. 77, 1055–1060 (2020). https://doi.org/10.3938/jkps.77.1055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.1055

Keywords

Navigation