Skip to main content
Log in

Phase Analysis of a VO2 Thin Film by Using Its Current-voltage Characteristics

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

Abstract

Vanadium oxides (VOx) are among the most widely used materials that undergo a metal-insulator transition (MIT). A sharp difference in their electrical resistance is observed before and after they reach the transition temperature. A great deal of research is currently underway to apply these materials to various applications. However, vanadium oxides generally have varied phases, and thin films made of these materials often end up with a multi-phase microstructure rather than a single-phase one. Also, these thin films are not as stable as desired. This multi-phase microstructure negatively affects the electrical properties of a thin film; thus, ensuring that a single-phase microstructure is achieved is important. An analysis of those thin films as to how this multi-phase microstructure, if any, is configured is also important. In the present study, I–V measurements were conducted to identify and analyze all VOx phases present in the VO2 thin film and even those that were too small in volume to be detected by using X-ray diffraction (XRD) analysis. The experimental results were further analyzed using a space-charge-limited current model. As a result, at least two other phases, i.e., V5O9 and V2O3, were found to be present in the VO2 thin film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. F. Mott, Rev. Mod. Phys. 40, 677 (1968).

    Article  ADS  Google Scholar 

  2. T. M. Rice, H. Launois and J. P. Pouget, Phys. Rev. Lett. 73, 3042 (1994).

    Article  ADS  Google Scholar 

  3. H. T. Kim et al., J. Appl. Phys. 107, 023702 (2010).

    Article  ADS  Google Scholar 

  4. H. T. Kim et al., Phys. Rev. Lett. 97, 266401 (2006).

    Article  ADS  Google Scholar 

  5. H. Kim et al., AIP Adv. 9, 015302 (2019).

    Article  ADS  Google Scholar 

  6. N. A. Charipar, H. Kim, S. A. Mathews and A. Pique, AIP Adv. 6, 015113 (2016).

    Article  ADS  Google Scholar 

  7. A. Pashkin et al., Phys. Rev. B 83, 195120 (2011).

    Article  ADS  Google Scholar 

  8. H. Kim et al., Thin Solid Films 596, 45 (2015).

    Article  ADS  Google Scholar 

  9. N. Shukla et al., Nat. Commun. 6, 7812 (2015).

    Article  ADS  Google Scholar 

  10. Y. Zhou and S. Ramanathan, J. Appl. Phys. 111, 084508 (2012).

    Article  ADS  Google Scholar 

  11. H. Takeya et al., Sci.Rep. 8, 12764 (2018).

    Article  ADS  Google Scholar 

  12. D. W. Ferrara et al., Nano Lett. 13, 4169 (2013).

    Article  ADS  Google Scholar 

  13. K. Liu et al., Adv.Mater. 26, 1746 (2014).

    Article  ADS  Google Scholar 

  14. A. Hendaoui et al., Sol. Energy Mater. Sol. Cells 117, 494 (2013).

    Article  Google Scholar 

  15. J. B. Pendry, D. Schurig and D. R. Smith, Science 312, 1780 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Cai, U. K. Chettiar, A. V. Kildishev and V. M. Shalaev, Nat. Photonics 1, 224 (2007).

    Article  ADS  Google Scholar 

  17. I. I. Smolyaninov, Y-J. Hung and C. C. Davis, Science 315, 1699 (2007).

    Article  ADS  Google Scholar 

  18. N. Liu et al., Nano Lett. 10, 2342 (2010).

    Article  ADS  Google Scholar 

  19. A. M. Makarevich et al., J. Mater. Chem. C 3, 9197 (2015).

    Article  Google Scholar 

  20. S. H. Kim et al., Proc. SPIE 10344, 103440Q (2017).

    Google Scholar 

  21. B. Fisher, J. Genossar and G. M. Reisner, Solid State Commun. 226, 29 (2016).

    Article  ADS  Google Scholar 

  22. B. J. Kim et al., Phys. Rev. B 77, 235401 (2008).

    Article  ADS  Google Scholar 

  23. P. Mark and W. Helfrich, J. Appl. Phys. 33, 205 (1962).

    Article  ADS  Google Scholar 

  24. K. R. Bambery and R. J. Fleming, J. Therm. Anal. 50, 19 (1997).

    Article  Google Scholar 

  25. G. Gramberg, Solid-State Electron. 14, 1067 (1971).

    Article  ADS  Google Scholar 

  26. N. F. Mott, Metal-Insulator Transitions (Taylor and Francis, London, UK, 1990).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong Hyun Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ko, J.B., Lim, S.C., Kim, BJ. et al. Phase Analysis of a VO2 Thin Film by Using Its Current-voltage Characteristics. J. Korean Phys. Soc. 77, 975–980 (2020). https://doi.org/10.3938/jkps.77.975

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.77.975

Keywords

Navigation