Skip to main content
Log in

Two-Level Band Selection Framework for Hyperspectral Image Classification

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Dimensionality reduction strategies can be broadly categorized as band selection and feature extraction. Researchers and analysts from the remote sensing community give greater preference to band selection over feature extraction as the latter modifies the original reflectance values of hyperspectral data, making it difficult to understand the behavior of the materials in terms of their reflectance values. However, feature extraction strategies have their own advantages which cannot be ignored. Thus, a two-level, PCA-based band selection framework is proposed to unify the two dimensionality reduction strategies so that benefits of both the strategies can be derived. The proposed approach selects bands based on their relationship with a given set of principal components explained in terms of component loadings, thus keeping the original bands intact. Additionally, contrary to the popular notion that the complete information of all bands is adequately coalesced in the top principal components, middle principal components play a far stronger discriminative role when the competing classes are spectrally confusing to each other. Thus, for each level of classification, a different range of principal components is used to select the bands, on the basis of the level of spectral similarity expected between the classes at each level. Experimental results indicate that the proposed two-level band selection algorithm can select bands with varying levels of discriminative capabilities to effectively classify hyperspectral images consisting of classes spectrally very similar in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5: a
Fig. 6
Fig. 7: a

Similar content being viewed by others

Data Availability

The datasets used in the current study are publicly archived at the official website of the computational Intelligence Group of the University of the Basque Country.

References

  • Allegrini, A., Bajocco, S., Merola, P., & Mandrone, S. (2005). Hydrological studies using hyperspectral remote-sensed data: monitoring thermal anomalies and census of internal water bodies. In Proceedings of international symposium and exhibition on geoinformation.

  • Artigas, F. J., & Yang, J. S. (2005). Hyperspectral remote sensing of marsh species and plant vigour gradient in the New Jersey Meadowlands. Photogrammetric Engineering and Remote Sensing, 26(23), 5209–5220.

    Google Scholar 

  • Arzuaga-Cruz, E., Jimenez-Rodriguez, L. O., & Velez-Reyes, M. (2003). Unsupervised feature extraction and band subset selection techniques based on relative entropy criteria for hyperspectral data analysis. AeroSense, 2003, 462–473.

    Google Scholar 

  • Baisantry, M., Sao, A. K., & Shukla, D. P. (2018) Two-level feature extraction framework for hyperspectral image classification. In Proceedings of 9th workshop on hyperspectral image and signal processing: Evolution in remote sensing (WHISPERS) (pp. 1–5).

  • Brusco, M. J., & Köhn, H. F. (2008). Clustering by passing messages between data points. Science, 319(5864), 972–976.

    Article  Google Scholar 

  • Cadima, J., & Jolliffe, I. T. (1995). Loading and correlations in the interpretation of principle compenents. Journal of Applied Statistics, 22(2), 203–214.

    Article  Google Scholar 

  • Cai, Y., Liu, X., & Cai, Z. (2019). BS-nets: An end-to-end framework for band selection of hyperspectral image. IEEE Transactions on Geoscience and Remote Sensing, 58(3), 1969–1984. https://doi.org/10.1109/TGRS.2019.2951433.

    Article  Google Scholar 

  • Cathcart, J. M. (2008) Detection and sensing of mines, explosive objects, and obscured targets. In Proceedings of SPIE disturbed soil characterization workshop.

  • Chang, C. I., Du, Q., Sun, T. L., & Althouse, M. L. G. (1999). A joint band prioritization and band-decorrelation approach to band selection for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 37(6), 2631–2641.

    Article  Google Scholar 

  • Cheriyadat, A., & Bruce, L. M. (2003) Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. In Proceedings of IEEE international geoscience and remote sensing symposium (Vol. 6, pp. 3420–3422).

  • Crósta, A., De Roberto, C., & Souza, Filho. (2000). Hyperspectral remote sensing for mineral mapping: a case-study at alto Paraíso de Goías, central Brazil. Revista Brasileira de Geociências, 30(3), 551–554.

    Article  Google Scholar 

  • Crosta, A. P., & Moore, J. M. (1989). Enhancement of landsat themetic mapper imagery for residual soil mapping in SW Minas Gerais State, Brazil: A prospecting case history in Greenstone Belt Terrain. In Proceedings of the 7th thematic conference on remote sensing for exploration geology (pp. 1173–1187).

  • Davies, D., & Bouldin, D. (1979). A cluster separation measure. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1(2), 224–227.

    Article  Google Scholar 

  • Du, H., Qi, H., Wang, X., Ramanath, R., & Snyder, W. E. (2003). Band selection using independent components analysis for hyperspectral image processing. In Proceedings of 32nd Applied Imagery Pattern Recognition Workshop (pp. 93–98).

  • Dunteman, G. H. (1969). Using principal components to select a subset of variables. principal component analysis. Sage University Papers Series.

  • Green, A., Berman, M., Switzer, P., & Craig, M. (1988). A transform for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 26(1), 65–74.

    Article  Google Scholar 

  • Group CI. (2011). Hyperspectral remote sensing scenes [online]. http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes. Accessed 9 Feb 2018.

  • Guo, B., et al. (2006). Band selection for hyperspectral image classification using mutual information. IEEE Geoscience and Remote Sensing Letters, 3(4), 522–526.

    Article  Google Scholar 

  • Herve, A., & Williams Lynne, J. (2010). Principal component analysis. WIREs Computational Statistics, 2, 433–459.

    Article  Google Scholar 

  • Huber-Lerner, M., Hadar, O., Rotman, S. R., & Huber-Shalem, R. (2016). Hyperspectral band selection for anomaly detection: The role of data gaussianity. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 9(2), 732–743.

    Article  Google Scholar 

  • Hughes, G. (1968). On the mean accuracy of statistical pattern recognizers. IEEE Transactions on Information Theory, 14(1), 55–63.

    Article  Google Scholar 

  • Ifarraguerri, A., & Prairie, M. W. (2004). Visual method for spectral band selection. IEEE Geoscience and Remote Sensing Letters, 1(2), 101–106.

    Article  Google Scholar 

  • Jia, X., Kuo, B. C., & Crawford, M. M. (2013) Feature mining for hyperspectral image classification. In Proceedings of IEEE.

  • Jia, S., Qian, Y., & Ji, Z. (2008) Band selection for hyperspectral imagery using affinity propagation. In Proceedings of DICTA’08. digital image computing: techniques and applications (pp. 137–141).

  • Jia, X., & Richards, J. A. (1999). Segmented principal components transformation for efficient hyperspectral remote-sensing image display and classification. IEEE Transactions on Geoscience and Remote Sensing, 37(1), 538–542.

    Article  Google Scholar 

  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20150202.

    Article  Google Scholar 

  • Kohavi, R. (1995) A study of cross-validation and bootstrap for accuracy estimation and model selection. In Proceedings of the fourteenth international joint conference on artificial intelligence (pp. 1137–1143).

  • Koonsanit, K., Jaruskulchai, C., & Eiumnoh, A. (2012). Band selection for dimension reduction in hyper spectral image using integrated information gain and principal components analysis technique. International Journal of Machine Learning and Computing, 2(3), 248–251.

    Article  Google Scholar 

  • Li, S., & Qi, H. (2011). Sparse representation based band selection for hyperspectral images. In Proceedings of International Conference on Image Processing, ICIP (pp. 2693–2696).

  • Lu, D., & Weng, Q. (2007). A survey of image classification methods and techniques for improving classification performance. Journal of Applied Statistics International Journal of Remote Sensing, 28(5), 823–870.

    Article  Google Scholar 

  • Mausel, P., Kramber, W., & Lee, J. (1990). Optimum band selection for supervised classification of multispectral data. Photogrammetric Engineering & Remote Sensing, 56, 55–60.

    Google Scholar 

  • O’Toole, A. J., Abdi, H., Deffenbacher, K. A., & Valentin, D. (1993). Low-dimensional representation of faces in higher dimensions of the face space. Journal of the Optical Society of America, 10(3), 405–411.

    Article  Google Scholar 

  • O’Toole, A., Roark, D., & Abdi, H. (2002). Recognizing moving faces: A psychological and neural synthesis. Trends in cognitive sciences, 6, 261–266.

    Article  Google Scholar 

  • Ramakrishnan, D., & Bharti, R. (2015). Hyperspectral remote sensing and geological applications. Current Science, 108, 879–891.

    Google Scholar 

  • Sharma, P., Abrol, V., Dileep, A. D., & Sao, A. K. (2018). Sparse coding based features for speech units classification. Computer Speech Language, 47, 333–350.

    Article  Google Scholar 

  • Shejin, T., & Sao, A. K. (2012). Significance of dictionary for sparse coding based face recognition. In Proceedings of the international conference of biometrics special interest group (BIOSIG), Darmstadt (pp. 1–6).

  • Sun, W., Zhang, L., Du, B., Li, W., & Mark, L. Y. (2015). Band selection using improved sparse subspace clustering for hyperspectral imagery classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2784–2797.

    Article  Google Scholar 

  • Thenkabail, P. S., Gumma, M. K., Teluguntla, P., & Mohammed, I. A. (2014). Hyperspectral remote sensing of vegetation and agricultural crops. Photogrammetric Engineering and Remote Sensing, 80(4), 697–709.

    Google Scholar 

  • Theodoridis, S., & Koutroumbas, K. (2009). Pattern recognition (4th ed.). Cambridge: Academic Press.

    Google Scholar 

  • Torbick, N., & Becker, B. (2009). Evaluating principal components analysis for identifying optimal bands using wetland hyperspectral measurements from the Great Lakes, USA. Remote Sensing, 1, 408–417.

    Article  Google Scholar 

  • Valentin, D., Abdi, H., & O’Toole, A. J. (1994). Categorization and identification of human face images by neural networks: A review of the linear autoassociative and principal component approaches. Journal of Biological Systems, 2(3), 413–429.

    Article  Google Scholar 

  • Wang, Q., Li, Q., & Li, X. (2019). Hyperspectral band selection via adaptive subspace partition strategy. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

  • Yingzi, D., Chang, C., Ren, H., Chang, C., Jensen, J., & D’Amico, F. (2004). New hyperspectral discrimination measure for spectral characterization. Optical Engineering, 43, 1777–1786.

    Article  Google Scholar 

  • Zaatour, R., Bouzidi, S., & Zagrouba, E. (2017) Independent component analysis-based band selection techniques for hyperspectral images analysis. Journal of Applied Remote Sensing, 11(2), 026006.

    Article  Google Scholar 

  • Zhai, H., Zhang, H., Zhang, L., & Li, P. (2019). Laplacian-Regularized Low-Rank Subspace Clustering For Hyperspectral Image Band Selection. IEEE Transactions on Geoscience and Remote Sensing, 57(3), 1723–1740.

    Article  Google Scholar 

  • Zou, H., & Xue, L. (2018). A selective overview of sparse principal component analysis. Proceedings of the IEEE, 106(8), 1311–1320.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Munmun Baisantry.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baisantry, M., Sao, A.K. & Shukla, D.P. Two-Level Band Selection Framework for Hyperspectral Image Classification. J Indian Soc Remote Sens 49, 843–856 (2021). https://doi.org/10.1007/s12524-020-01262-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-020-01262-w

Keywords

Navigation