Skip to main content
Log in

A Uniqueness Result for 3D Incompressible Fluid-Rigid Body Interaction Problem

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We study a 3D nonlinear moving boundary fluid-structure interaction problem describing the interaction of the fluid flow with a rigid body. The fluid flow is governed by 3D incompressible Navier-Stokes equations, while the motion of the rigid body is described by a system of ordinary differential equations called Euler equations for the rigid body. The equations are fully coupled via dynamical and kinematic coupling conditions. We consider two different kinds of kinematic coupling conditions: no-slip and slip. In both cases we prove a generalization of the well-known weak-strong uniqueness result for the Navier-Stokes equations to the fluid-rigid body system. More precisely, we prove that weak solutions that additionally satisfy the Prodi-Serrin \(\text {L}^{r}-\text {L}^{s}\) condition are unique in the class of Leray-Hopf weak solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Al Baba, H., Chemetov, N.V., Nečasová, Š., Muha, B.: Strong solutions in \(L^2\) framework for fluid-rigid body interaction problem. Mixed case. Topol. Methods Nonlinear Anal. 52(1), 337–350 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Bodnár, T., Galdi, G.P., Nečasová, Š.: Fluid-Structure Interaction and Biomedical Applications. Springer, Basel (2014)

    Book  Google Scholar 

  3. Bodnár, T., Galdi, G.P., Nečasová, Š.: Particles in Flows. Advances in Mathematical Fluid Mechanics. Springer, Cham (2017)

    Google Scholar 

  4. Bravin, M.: Energy equality and uniqueness of weak solutions of a “viscous incompressible fluid + rigid body” system with navier slip-with-friction conditions in a 2d bounded domain. J. Math. Fluid Mech. 21(2), 21–23 (2019)

    Article  MathSciNet  Google Scholar 

  5. Bucur, D., Feireisl, E., Nečasová, Š.: Boundary behavior of viscous fluids: influence of wall roughness and friction-driven boundary conditions. Arch. Ration. Mech. Anal. 197(1), 117–138 (2010)

    Article  MathSciNet  Google Scholar 

  6. Chemetov, N.V., Nečasová, Š.: The motion of the rigid body in the viscous fluid including collisions. Global solvability result. Nonlinear Anal. Real World Appl. 34, 416–445 (2017)

    Article  MathSciNet  Google Scholar 

  7. Chemetov, N.V., Nečasová, Š., Muha, B.: Weak-strong uniqueness for fluid-rigid body interaction problem with slip boundary condition. To appear in Journal of Mathematical Physics, (2018)

  8. Conca, C., San Martín H, J., Tucsnak, M.: Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid. Comm. Partial Differ. Equ. 25(5–6), 1019–1042 (2000)

    MathSciNet  MATH  Google Scholar 

  9. Cumsille, P., Takahashi, T.: Wellposedness for the system modelling the motion of a rigid body of arbitrary form in an incompressible viscous fluid. Czechoslovak Math. J. 58(133(4)), 961–992 (2008)

    Article  MathSciNet  Google Scholar 

  10. Desjardins, B., Esteban, M.J.: Existence of weak solutions for the motion of rigid bodies in a viscous fluid. Arch. Ration. Mech. Anal. 146(1), 59–71 (1999)

    Article  MathSciNet  Google Scholar 

  11. Desjardins, B., Esteban, M.J.: On weak solutions for fluid-rigid structure interaction: compressible and incompressible models. Commun. Partial Differ. Equ. 25(7–8), 1399–1413 (2000)

    MathSciNet  MATH  Google Scholar 

  12. Disser, K., Galdi, G.P., Mazzone, G., Zunino, P.: Inertial motions of a rigid body with a cavity filled with a viscous liquid. Archive Ratl. Mech. Anal. 221(1), 487–526 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  13. Feireisl, E.: On the motion of rigid bodies in a viscous fluid. Appl. Math. 47(6), 463–484 (2002)

    Article  MathSciNet  Google Scholar 

  14. Feireisl, E.: On the motion of rigid bodies in a viscous incompressible fluid. J. Evol. Equ. 3(3), 419–441 (2003)

    Article  MathSciNet  Google Scholar 

  15. Galdi, G.P.: An introduction to the Navier-Stokes initial-boundary value problem. In: Fundamental Directions in Mathematical Fluid Mechanics. Adv. Math. Fluid Mech., pp. 1–70. Birkhäuser, Basel, (2000)

  16. Galdi, G., Giovanni, P., Mácha, V., Nečasová, Š.: On weak solutions to the problem of a rigid body with a cavity filled with a compressible fluid, and their asymptotic behavior. Int. J. NonLin. Mech. 121, 103431 (2020)

    Article  Google Scholar 

  17. Geissert, M., Götze, K., Hieber, M.: \(L^p\)-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids. Trans. Am. Math. Soc. 365(3), 1393–1439 (2013)

    Article  Google Scholar 

  18. Gérard-Varet, D., Hillairet, M.: Existence of weak solutions up to collision for viscous fluid-solid systems with slip. Commun. Pure Appl. Math. 67(12), 2022–2075 (2014)

    Article  MathSciNet  Google Scholar 

  19. Gérard-Varet, D., Hillairet, M., Wang, C.: The influence of boundary conditions on the contact problem in a 3D Navier-Stokes flow. J. Math. Pures Appl. (9) 103(1), 1–38 (2015)

    Article  MathSciNet  Google Scholar 

  20. Gérard-Varet, D., Masmoudi, N.: Relevance of the slip condition for fluid flows near an irregular boundary. Commun. Math. Phys. 295(1), 99–137 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Glass, O., Sueur, F.: Uniqueness results for weak solutions of two-dimensional fluid-solid systems. Arch. Ration. Mech. Anal. 218(2), 907–944 (2015)

    Article  MathSciNet  Google Scholar 

  22. Gunzburger, M.D., Lee, H.-C., Seregin, G.A.: Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions. J. Math. Fluid Mech. 2(3), 219–266 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  23. Inoue, A., Wakimoto, M.: On existence of solutions of the Navier-Stokes equation in a time dependent domain. J. Fac. Sci. Univ. Tokyo Sect. IA Math 24(2), 303–319 (1977)

    MathSciNet  MATH  Google Scholar 

  24. Jäger, W., Mikelić, A.: On the roughness-induced effective boundary conditions for an incompressible viscous flow. J. Differ. Equ. 170(1), 96–122 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  25. Neustupa, J., Nečasová, Š., Kučera, P.: A pressure associated with a weak solution to the Navier-Stokes equations with Navier’s boundary condition. J. Math. Fluid Mech. 22(3), 37 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  26. Maity, D., Tucsnak, M.: \(L^p\)-\(L^q\) maximal regularity for some operators associated with linearized incompressible fluid-rigid body problems. In Mathematical analysis in fluid mechanics—selected recent results, volume 710 of Contemp. Math., pp. 175–201. Am. Math. Soc., Providence, RI (2018)

  27. Muha, B., Čanić, S.: Existence of a weak solution to a nonlinear fluid-structure interaction problem modeling the flow of an incompressible, viscous fluid in a cylinder with deformable walls. Arch. Ration. Mech. Anal. 207(3), 919–968 (2013)

    Article  MathSciNet  Google Scholar 

  28. Muha, B., Čanić, S.: Existence of a weak solution to a fluid-elastic structure interaction problem with the navier slip boundary condition. J. Differ. Equ. 260(12), 8550–8589 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Neustupa, J.: The Role of Pressure in the Theory of Weak Solutions. In Fluids under Pressure. Birkhäuser, Basel (2020)

    Google Scholar 

  30. Roubíček, T.: Nonlinear Partial Differential Equations with Applications, vol. 153. Springer, Berlin (2013)

    Book  Google Scholar 

  31. Martín, J.A.S., Starovoitov, V., Tucsnak, M.: Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid. Arch. Ration. Mech. Anal. 161(2), 113–147 (2002)

    Article  MathSciNet  Google Scholar 

  32. Serrin, J.: The initial value problem for the Navier-Stokes equations. In: Nonlinear Problems (Proc. Sympos., Madison, Wis., 1962), pp. 69–98. Univ. Wisconsin Press, Madison, Wis. (1963)

  33. Serrin, J.: On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Ration. Mech. Anal. 9, 187–195 (1962)

    Article  MathSciNet  Google Scholar 

  34. Simon, J.: On the Existence of the pressure for solutions of the variational Navier-Stokes equations. J. Math. Fluid Mech. 1(3), 225–234 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  35. Starovoĭtov, V.N.: On the nonuniqueness of the solution of the problem of the motion of a rigid body in a viscous incompressible fluid. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 306(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funktsii. 34):199–209, 231–232, (2003)

  36. Takahashi, T.: Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain. Adv. Differ. Equ. 8(12), 1499–1532 (2003)

    MathSciNet  MATH  Google Scholar 

  37. Temam, R.: Navier-Stokes equations. Theory and numerical analysis. North-Holland Publishing Co., Amsterdam (1977). Studies in Mathematics and its Applications, Vol. 2

  38. Wang, C.: Strong solutions for the fluid-solid systems in a 2-D domain. Asymptot. Anal. 89(3–4), 263–306 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for her/his comments that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Muha.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by F. Gazzola

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Boris Muha: The research of B.M. leading to these results has been supported by Croatian Science Foundation under the project IP-2018-01-3706 The research of Š.N. leading to these results has received funding from the Czech Sciences Foundation (GAČR), 19-04243S and RVO 67985840 Ana Radošević: The research of A.R. leading to these results has been supported by Croatian Science Foundation under the project IP-2018-01-3706, and by the Czech Sciences Foundation (GAČR), 19-04243S.

Appendix

Appendix

1.1 Local Transformation

In the proof of Theorem 1.1, since fluid domains of the strong and the weak solution are a priori different, we transform the problem into a common domain. We use the transformation presented in [7] to transform a strong solution to the domain of a weak solution, which is a moving domain, in a way that preserves the divergence-free condition. It is defined by a transformation to a fixed domain as in [36] or [17], which we also need for the construction of regularization. Even though this transformation is by now standard in the literature, here we briefly describe this transformation and recall its main properties for the convenience of the reader and to establish the notation that is used throughout the paper.

According to [17, 36] we can define a transformation \(\mathbf{X }(t):\Omega \rightarrow \Omega \) as the unique solution of the system

$$\begin{aligned} \frac{d}{dt}\mathbf{X }(t,\mathbf{y })=\Lambda (t,\mathbf{X }(t,\mathbf{y })), \qquad \mathbf{X }(0,\mathbf{y })=\mathbf{y }, \qquad \forall \ \mathbf{y }\in \Omega . \end{aligned}$$

where the velocity of change of coordinates \(\Lambda (t,\mathbf{x })\) is a vector field that is smooth in the space variables and divergence-free, and satisfies \(\Lambda =\mathbf{a }(t)+{\varvec{\omega }}(t)\times (\mathbf{x }-\mathbf{q }(t))\) in a neighborhood of S(t) and \(\Lambda =0\) in a neighborhood of \(\partial \Omega \).

Note that the function \(\Lambda \) is a divergence-free extension of the function \(S(t)\ni \mathbf{x }\mapsto \mathbf{a }(t)+{\varvec{\omega }}(t)\times (\mathbf{x }-\mathbf{q }(t))\) to the set \(\Omega \). The construction of the extension \(\Lambda \) is given in [17, Sect. 3] with little correction to the cut-off function \(\chi \), where instead of balls \(\overline{S(t)}\subset B_1\subset B_2\), we choose open sets \(K_1,K_2\) such that \(\overline{S(t)}\subset K_1\subset K_2\subset \Omega \).

We denote

$$\begin{aligned} \Lambda =:\text {Ext}(\mathbf{a }+{\varvec{\omega }}\times (\mathbf{x }-\mathbf{q })). \end{aligned}$$

Here, we assume that \(\mathbf{a }, {\varvec{\omega }}\in L^{\infty }(0,T)\), which is slightly different from assumptions in [17, 36]. Therefore, for existence and uniqueness of solution \(\mathbf{X }\) we need Carathéodory’s theorem (see e.g. [30], Theorem 1.45) instead of the Picard-Lindelöf theorem.

For all \(t\in [0,T]\), the defined transformation \(\mathbf{X }(t)\) is a \(C^{\infty }\) diffeomorphism and the derivatives

$$\begin{aligned} \frac{\partial ^{|\alpha |+i}\mathbf{X }}{\partial t^{i}\partial \mathbf{y }^{\alpha }},\qquad i=0,1\ ,\quad \alpha \in {{\mathbb {N}}}_0^3, \end{aligned}$$
(A.1)

exist and are bounded.

We denote by \(\mathbf{Y }\) the inverse of \(\mathbf{X }\), i.e.

$$\begin{aligned} \mathbf{Y }(t,\cdot )=\mathbf{X }(t,\cdot )^{-1}. \end{aligned}$$

It satisfies the system of differential equations

$$\begin{aligned} \frac{d}{dt}\mathbf{Y }(t,\mathbf{x })=\Lambda ^{(\mathbf{Y })} (t,\mathbf{Y }(t,\mathbf{x })), \qquad \mathbf{Y }(0,\mathbf{x })=\mathbf{x }, \qquad \forall \ \mathbf{x }\in \Omega , \end{aligned}$$

where

$$\begin{aligned} \Lambda ^{(\mathbf {Y })} (t,\mathbf {y }) = -\nabla {\mathbf {X }}(t,\mathbf {y })^{-1}\Lambda (t,\mathbf {X }(t,\mathbf {y })) . \end{aligned}$$

Note that \(\mathbf{Y }\) possesses the same space and time regularity as \(\mathbf{X }\). Furthermore, \(\mathbf{X }\) and \(\mathbf{Y }\) satisfy

$$\begin{aligned} \nabla {\mathbf{X }}(t,\mathbf{y })\nabla {\mathbf{Y }}(t,\mathbf{X }(t,\mathbf{y })) = \text {id} \end{aligned}$$

and are volume-preserving, i.e.

$$\begin{aligned} \det \nabla {\mathbf{X }}(t,\mathbf{y }) = \det \nabla {\mathbf{Y }}(t,\mathbf{x }) = 1, \end{aligned}$$
(A.2)

since \(\mathop {\mathrm{div}}\nolimits \Lambda = 0\).

Then, by Proposition 2.4. in [23], the transformation of the velocity

$$\begin{aligned} \mathbf{U }(t,\mathbf{y }) =\nabla {\mathbf{Y }}(t,\mathbf{X }(t,\mathbf{y }))\mathbf{u }(t,\mathbf{X }(t,\mathbf{y })) \end{aligned}$$

preserves the divergence, i.e.

$$\begin{aligned} \mathop {\mathrm{div}}\nolimits _{\mathbf{y }}\mathbf{U }(t,\mathbf{y }) =\mathop {\mathrm{div}}\nolimits _{\mathbf{x }}\mathbf{u }(t,\mathbf{X }(t,\mathbf{y })), \qquad \forall (t,\mathbf{y })\in \Omega _{F}. \end{aligned}$$

Now, by substituting the transformed solution

$$\begin{aligned} \left\{ \begin{array}{l} \mathbf{U }(t,\mathbf{y })=\nabla {\mathbf{Y }}(t,{\mathbf{X }}(t,\mathbf{y }))\mathbf{u }(t,{\mathbf{X }}(t,\mathbf{y })), \\ P(t,\mathbf{y })=p(t,{\mathbf{X }}(t,\mathbf{y })), \\ \mathbf{A }(t)={{\mathbb {Q}}}^{T}(t)\mathbf{a }(t), \\ {\varvec{\Omega }}(t)={{\mathbb {Q}}}^{T}(t){\varvec{\omega }}(t), \\ {\mathcal {T}}({\mathbf{U }}(t,\mathbf{y }),P(t,\mathbf{y }))={{\mathbb {Q}}}^{T}(t) {{\mathbb {T}}}({{\mathbb {Q}}}(t)\mathbf{U }(t,\mathbf{y }),P(t,\mathbf{y })){{\mathbb {Q}}}(t) \end{array} \right. \end{aligned}$$

in the system of equations (1.12), we get (see [17] or [7])

$$\begin{aligned} \left. \begin{array}{l} \partial _{t}\mathbf{U }+(\mathbf{U }\cdot \nabla )\mathbf{U }-\triangle \mathbf{U }+\nabla P = F, \\ \mathop {\mathrm{div}}\nolimits \mathbf{U }= 0 \end{array} \right\} \;\text {in}\;(0,T)\times \Omega _{F}, \end{aligned}$$
(A.3)
$$\begin{aligned} \mathbf{A }^{\prime }&=-{\varvec{\Omega }}\times \mathbf{A }-\int _{\partial S_{0}}{\mathcal {T}}(\mathbf{U },P)\mathbf{N }\,\mathrm{d}\gamma (\mathbf{y })\qquad \text {in}\;(0,T), \end{aligned}$$
(A.4)
$$\begin{aligned} (I{\varvec{\Omega }})^{\prime }&={\varvec{\Omega }}\times (I{\varvec{\Omega }}) -\int _{\partial S_{0}} ( \mathbf{y }-\mathbf{q }(t))\times {{\mathcal {T}}}(\mathbf{U },P)\mathbf{N }\,\mathrm{d}\gamma (\mathbf{y }) \quad \text {in} \;(0,T), \end{aligned}$$
(A.5)
$$\begin{aligned} \mathbf{U }&= \mathbf{U }_{s}\qquad \text {on}\;(0,T)\times \partial S_0, \qquad \quad \mathbf{U }= 0\qquad \text {on}\;(0,T)\times \partial \Omega , \end{aligned}$$
(A.6)

where \( \mathbf{U }_s = {\varvec{\Omega }}\times \mathbf{y }+ \mathbf{A }\) is the transformed rigid velocity \(\mathbf{u }_s\), \(\mathbf{N }=\mathbf{N }(\mathbf{y })\) is the unit normal at \(\mathbf{y }\in S_0\), directed inside of \(S_0\), \(I={{{\mathbb {Q}}}}^{T}{{\mathbb {J}}}{{{\mathbb {Q}}}}\) is the transformed inertia tensor which no longer depends on time, and

$$\begin{aligned} F = ({\mathcal {L}}-\triangle )\mathbf {U }-{\mathcal {M}}\mathbf {U }-\widetilde{{\mathcal {N}}}\mathbf {U }-({\mathcal {G}}-\nabla )P. \end{aligned}$$

The operator \({\mathcal {L}}\) is the transformed Laplace operator and it is given by

$$\begin{aligned} ({\mathcal {L}}\mathbf{u })_{i}&=\sum _{j,k=1}^{n}\partial _{j}(g^{jk}\partial _k \mathbf{u }_{i})+2\sum _{j,k,l=1}^{n}g^{kl}\Gamma _{jk}^{i}\partial _{l}\mathbf{u }_{j} \nonumber \\&\quad +\sum _{j,k,l=1}^{n}\big (\partial _{k}(g^{kl}\Gamma _{jl}^{i})+\sum _{m=1}^{n}g^{kl}\Gamma _{jl}^{m}\Gamma _{km}^{i}\Big )\mathbf{u} _{j}, \end{aligned}$$
(A.7)

the convection term is transformed into

$$\begin{aligned} ({\mathcal {N}}\mathbf {u })_i = \sum _{j=1}^n \mathbf {u }_j \partial _j \mathbf {u } _i + \sum _{j,k=1}^n \Gamma ^i_{jk} \mathbf {u }_j\mathbf {u }_k = (\mathbf {u }\cdot \nabla \mathbf {u })_i + (\widetilde{{\mathcal {N}}}\mathbf {u })_i, \end{aligned}$$
(A.8)

the transformation of time derivative and gradient is given by

$$\begin{aligned} ({\mathcal {M}} \mathbf{u })_{i} = \sum _{j=1}^n \dot{\mathbf{Y }}_j \partial _j \mathbf{u }_i + \sum _{j,k=1}^n \Big (\Gamma _{jk}^i \dot{\mathbf{Y }}_k + (\partial _k \mathbf{Y }_i)(\partial _j \dot{\mathbf{X }}_k)\Big )\mathbf{u }_j, \end{aligned}$$
(A.9)

and the gradient of pressure is transformed as follows:

$$\begin{aligned} ({\mathcal {G}}p)_{i}=\sum _{j=1}^{n}g^{ij}\partial _{j}p. \end{aligned}$$
(A.10)

Here we have denoted the metric covariant tensor

$$\begin{aligned} g_{ij}=X_{k,i}X_{k,j},\qquad X_{k,i}=\frac{\partial \mathbf{X }_{k}}{\partial \mathbf{y }_{i}}, \end{aligned}$$
(A.11)

the metric covariant tensor

$$\begin{aligned} g^{ij}=Y_{i,k}Y_{j,k}\qquad Y_{i,k}=\frac{\partial \mathbf{Y }_{i}}{\partial \mathbf{x }_{k}}, \end{aligned}$$
(A.12)

and the Christoffel symbol (of the second kind)

$$\begin{aligned} \Gamma _{ij}^{k}=\frac{1}{2}g^{kl}(g_{il,j}+g_{jl,i}-g_{ij,l}),\qquad g_{il,j}=\frac{\partial {g_{il}}}{\partial \mathbf{y }_{j}}. \end{aligned}$$
(A.13)

It is easy to observe that, in particular, the following holds:

$$\begin{aligned} \Gamma _{ij}^{k}=Y_{k,l}X_{l,ij}.\qquad X_{l,ij}=\frac{\partial \mathbf{X }_{l}}{ \partial \mathbf{y }_{i}\partial \mathbf{y }_{j}}. \end{aligned}$$

With little abuse of notation, we identify the operators \({\mathcal {L}},{\mathcal {M}}, \widetilde{{\mathcal {N}}}\) with

$$\begin{aligned}&\left\langle {\mathcal {L}}\mathbf{U }, {\varvec{\psi }}\right\rangle =\int _{\Omega _F(\tau )} \big (\sum _{ijk} (g^{jk}\partial _j\mathbf{U }_{i}\partial _k{\varvec{\psi }}_i + g^{jk}\partial _k\mathbf{U }_i\partial _i{\varvec{\psi }}_j) - \sum _{ijkl} (g^{kl}+\partial _l\mathbf{Y }_k)\Gamma _{li}^j\partial _k\mathbf{U }_{i}{\varvec{\psi }}_j\nonumber \\&\quad + \sum _{ijkl} (g^{kl}\Gamma _{li}^j\mathbf{U }_{i}\partial _k{\varvec{\psi }}_j + g^{jl}\Gamma _{li}^k\mathbf{U }_i\partial _k{\varvec{\psi }}_j) - \sum _{ijklm} (g^{kl}+\partial _k\mathbf{Y }_l)\Gamma _{li}^m\Gamma _{km}^j\mathbf{U }_{i}{\varvec{\psi }}_j \big ), \end{aligned}$$
(A.14)
$$\begin{aligned}&\left\langle {\mathcal {M}}\mathbf{U }, {\varvec{\psi }}\right\rangle = \int _{\Omega _F(\tau )}\sum _{i=1}^n\left( \sum _{j=1}^n \dot{\mathbf{Y }}_j \partial _j \mathbf{u }_i + \sum _{j,k=1}^n \Big (\Gamma _{jk}^i \dot{\mathbf{Y }}_k + (\partial _k \mathbf{Y }_i)(\partial _j \dot{\mathbf{X }}_k)\Big )\mathbf{u }_j\right) {\varvec{\psi }}_i, \end{aligned}$$
(A.15)
$$\begin{aligned}&\left\langle \widetilde{{\mathcal {N}}}\mathbf {U }, {\varvec{\psi }}\right\rangle = \int _{\Omega _F(\tau )} \sum _{i,j,k=1}^n \Gamma ^i_{jk} \mathbf {u }_j\mathbf {u }_k {\varvec{\psi }}_i, \end{aligned}$$
(A.16)

for all \({\varvec{\psi }}\in H^{1}(\Omega _{F}(t))\).

1.2 Reynolds Transport Theorem—Generalization

To prove the weak-strong uniqueness result and the energy equality, we want to cancel the derivation terms from the weak formulations. In the case of smooth functions \(\mathbf{u }\) and \(\mathbf{v }\), by the Reynolds Transport Theorem we have

$$\begin{aligned} \int _{0}^{t}\int _{{\Omega (\tau )}}\big (\mathbf{u }\cdot \partial _t\mathbf{v }+ \mathbf{v }\cdot \partial _t\mathbf{u }\big ) = -\int _{0}^{t}\int _{{\Omega (\tau )}} \nabla (\mathbf{v }\cdot \mathbf{u })\cdot \partial _t\mathbf{X }\, + \int _{{\Omega (t)}}\mathbf{v }(t)\cdot \mathbf{u }(t)\, - \int _{{\Omega (0)}}\mathbf{v }(0)\cdot \mathbf{u }(0). \end{aligned}$$

However, \(\mathbf{u }\) and \(\mathbf{v }\) are not regular enough, and the expression on the left is not well defined. But we can use Lemma 2.4, which states that for \(\mathbf{u }, \mathbf{v }\in {L}^{2}(0,T;{H}^1(\Omega (t)))\) and a coordinate transformation \(\mathbf{X }:\Omega \rightarrow \Omega (t)\), we have

$$\begin{aligned}&\int _{0}^{t}\int _{\Omega (\tau )}\big (\mathbf{u }\cdot \partial _t\mathbf{v }^h + \mathbf{v }\cdot \partial _t\mathbf{u }^h\big )\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \nonumber \\&\quad \rightarrow -\int _{0}^{t}\int _{\Omega (\tau )} \nabla (\mathbf{v }\cdot \mathbf{u })\cdot \partial _t\mathbf{X }\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau + \int _{\Omega (t)}\mathbf{v }(t)\cdot \mathbf{u }(t)\,\mathrm{d}\mathbf{x }\, - \int _{\Omega (0)}\mathbf{v }(0)\cdot \mathbf{u }(0)\,\mathrm{d}\mathbf{x }, \end{aligned}$$
(A.17)

when \(h\rightarrow 0\), for almost every \(t\in [0,T]\). Here \(\mathbf{u }^h\) denotes the regularization of \(\mathbf{u }\) described by (2.16)–(2.18).

Remark A.1

If the domain is fixed, the coordinate transformation \(\mathbf{X }\) is not necessary (\(\mathbf{X }=id\)) and the regularization is standard (convolution in time). Then, by Fubini’s theorem and the properties of the mollifier, we get

$$\begin{aligned} \int _{0}^{t}\int _{\Omega }&\mathbf{u }(\tau )\cdot \partial _t\mathbf{v }^h(\tau )\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau = \int _{0}^{t}\int _{\Omega }\int _{-\infty }^{+\infty } \mathbf{u }(\tau )\cdot \frac{d}{d\tau } j_h(\tau -s)\mathbf{v }(s)\,\, \mathrm{d}s \, \mathrm{d}\mathbf{x }\, \mathrm{d}\tau \nonumber \\ =&\int _{-\infty }^{+\infty }\int _{\Omega }\int _{0}^{t} \frac{d}{d\tau }j_h(\tau -s)\mathbf{u }(\tau )\cdot \mathbf{v }(s)\,\, \mathrm{d}\tau \, \mathrm{d}\mathbf{x }\, \mathrm{d}s \nonumber \\ =&-\int _{0}^{t}\int _{\Omega }\int _{-\infty }^{+\infty } \frac{d}{ds} j_h(s-\tau )\mathbf{u }(\tau )\cdot \mathbf{v }(s)\,\, \mathrm{d}\tau \, \mathrm{d}\mathbf{x }\, \mathrm{d}s \end{aligned}$$
(A.18)
$$\begin{aligned}&{ - \int _{-\infty }^{0}\int _{0}^{t}\int _{\Omega } \mathbf{u }(\tau )\cdot \frac{d}{d\tau }j_h(\tau -s)\mathbf{v }(s)\,\, \mathrm{d}\tau \, \mathrm{d}\mathbf{x }\, \mathrm{d}s } \end{aligned}$$
(A.19)
$$\begin{aligned}&{ - \int _{t}^{+\infty }\int _{0}^{t}\int _{\Omega } \mathbf{u }(\tau )\cdot \frac{d}{d\tau }j_h(\tau -s)\mathbf{v }(s)\,\, \mathrm{d}\tau \, \mathrm{d}\mathbf{x }\, \mathrm{d}s } \end{aligned}$$
(A.20)
$$\begin{aligned}&{ + \int _{0}^{t}\int _{-\infty }^{0}\int _{\Omega } \mathbf{u }(\tau )\cdot \frac{d}{d\tau }j_h(\tau -s)\mathbf{v }(s)\,\, \mathrm{d}\tau \, \mathrm{d}\mathbf{x }\, \mathrm{d}s } \end{aligned}$$
(A.21)
$$\begin{aligned}&{ + \int _{0}^{t}\int _{t}^{+\infty }\int _{\Omega } \mathbf{u }(\tau )\cdot \frac{d}{d\tau }j_h(\tau -s)\mathbf{v }(s)\,\, \mathrm{d}\tau \, \mathrm{d}\mathbf{x }\, \mathrm{d}s } \end{aligned}$$
(A.22)

We see that

$$\begin{aligned} \mathrm{(A.18)} = -\int _{0}^{t}d\tau \int _{\Omega }\partial _t\mathbf{u }^h(\tau )\cdot \mathbf{v }(\tau )\,\,\mathrm{d}\mathbf{x }\end{aligned}$$

and it is easy to prove, by using the Lebesgue differentiation theorem, that

$$\begin{aligned} {\mathrm{(A.19)} + \mathrm{(A.20)} + \mathrm{(A.21)} + \mathrm{(A.22)} } \rightarrow \int _{\Omega }\mathbf{u }(t)\cdot \mathbf{v }(t)\,\,\mathrm{d}\mathbf{x }- \int _{\Omega }\mathbf{u }(0)\cdot \mathbf{v }(0)\,\,\mathrm{d}\mathbf{x }, \qquad h\rightarrow 0, \end{aligned}$$

which ends the proof. In the case of a moving domain the idea of the proof is the same, but the calculation is more complicated because of the changes of variables in the definition of the regularization and before applying Fubini’s theorem.

First we introduce one auxiliary result.

Lemma A.1

Let \(\mathbf{u },\mathbf{v }\) and \(\mathbf{X }\) be as in Lemma 2.4, and let \(\mathbf{Y }\) be the inverse transformation \(\mathbf{Y }(t,\cdot )=\mathbf{X }(t,\cdot )^{-1}\). Then,

$$\begin{aligned} \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{v }\cdot \partial _t \mathbf{u }^h \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau -\int _{0}^{t}\int _{\Omega (\tau )} \mathbf{v }\cdot \partial _t\mathbf{U }_h \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \,\rightarrow \, 0, \qquad h\rightarrow 0, \end{aligned}$$

where

$$\begin{aligned} \mathbf{U }_h(t,\mathbf{x }) = \nabla \mathbf{Y }(t,\mathbf{x })^T \int _{-\infty }^{+\infty } j_h(t-\tau )\nabla \mathbf{X }(\tau ,\mathbf{Y }(t,\mathbf{x }))^T \nabla \mathbf{X }(\tau ,\mathbf{Y }(t,\mathbf{x })){\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(t,\mathbf{x })) \,\,\mathrm{d}\tau . \end{aligned}$$

Proof

Since

$$\begin{aligned} \int _{0}^{t}&\int _{\Omega (\tau )} \mathbf{v }\cdot \partial _t\mathbf{u }^h \\&= \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{v }(\tau ,\mathbf{x })\cdot \frac{d}{d\tau }\Big ( \int _{-\infty }^{+\infty } j_h(\tau -s) \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\, {\bar{\mathbf{u }}}(s,\mathbf{Y }(\tau ,\mathbf{x })) \,\,\mathrm{d}s \Big ) \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \\&= \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{v }(\tau ,\mathbf{x })\cdot \frac{d}{d\tau }\Big ( \nabla \mathbf{Y }(\tau ,\mathbf{x })^T \\&\qquad \qquad \int _{-\infty }^{+\infty } j_h(\tau -s)\nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))^T\nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x })){\bar{\mathbf{u }}}(s,\mathbf{Y }(\tau ,\mathbf{x })) \,\,\mathrm{d}s \Big ) \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau , \end{aligned}$$

it follows

$$\begin{aligned} \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{v }\cdot \partial _t \mathbf{u }^h \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau -\int _{0}^{t}\int _{\Omega (\tau )} \mathbf{v }\cdot \partial _t\mathbf{U }_h \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau = \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{v }(\tau ,\mathbf{x })\cdot \frac{d}{d\tau } f_h(\tau ,\mathbf{x }) \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau , \end{aligned}$$

where

$$\begin{aligned} f_h(\tau ,\mathbf{x })= & {} \nabla \mathbf{Y }(\tau ,\mathbf{x })^T \int _{-\infty }^{+\infty } j_h(\tau -s)\\&\big (\nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))^T\nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x })) - \nabla \mathbf{X }(s,\mathbf{Y }(\tau ,\mathbf{x }))^T\nabla \mathbf{X }(s,\mathbf{Y }(\tau ,\mathbf{x }))\big )\\&{\bar{\mathbf{u }}}(s,\mathbf{Y }(\tau ,\mathbf{x })) \,\mathrm{d}s. \end{aligned}$$

Since \(f_h\rightarrow 0\) strongly in \(\mathbf{L }^2 \mathbf{L }^2\) and the derivatives \(\frac{d}{d\tau }f_h\) are bounded in \(\mathbf{L }^2 \mathbf{L }^2\), it follows that \(\frac{d}{d\tau }f_h\rightarrow 0\) weakly in \(\mathbf{L }^2 \mathbf{L }^2\), so the above expression tends to 0 when \(h\rightarrow 0\). \(\square \)

Now we are able to prove Lemma 2.4.

Proof of Lemma 2.4

As in the fixed domain case, we start with the first term on the left-hand side of (2.19):

$$\begin{aligned} \int _{0}^{t}\int _{\Omega (\tau )}\mathbf{u }\cdot \partial _t\mathbf{v }^h&\,\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau = \int _{0}^{t}\int _{\Omega (\tau )}\mathbf{u }(\tau ,\mathbf{x })\cdot \frac{d}{d\tau } \Big (\nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\,{\bar{\mathbf{v }}}^h(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\Big )\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \nonumber \\&= \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{u }(\tau ,\mathbf{x })\cdot \frac{d}{d\tau } \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\,{\bar{\mathbf{v }}}^h(\tau ,\mathbf{Y }(\tau ,\mathbf{x }) \,\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \end{aligned}$$
(A.23)
$$\begin{aligned}&\quad + \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{u }(\tau ,\mathbf{x })\cdot \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\,\partial _t{\bar{\mathbf{v }}}^h(\tau ,\mathbf{Y }(\tau ,\mathbf{x })) \,\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \end{aligned}$$
(A.24)
$$\begin{aligned}&\quad + \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{u }(\tau ,\mathbf{x })\cdot \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\nabla {\bar{\mathbf{v }}}^h(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\,\partial _t \mathbf{Y }(\tau ,\mathbf{x }) \,\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \end{aligned}$$
(A.25)

The integral (A.24) contains the time derivative of the function \({\bar{\mathbf{v }}}^h\), so we need to combine it with the second term on the left-hand side of (2.19) before passing to the limit. First we change the coordinates. Then we can apply Fubini’s theorem, as follows.

$$\begin{aligned} \int _{0}^{t}\int _{\Omega (\tau )}&\mathbf{u }(\tau ,\mathbf{x })\cdot \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\,\partial _t{\bar{\mathbf{v }}}^h(\tau ,\mathbf{Y }(\tau ,\mathbf{x })) \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \nonumber \\&= \int _{0}^{t}\int _{\Omega } \mathbf{u }(\tau ,\mathbf{X }(\tau ,\mathbf{y }))\cdot \nabla \mathbf{X }(\tau ,\mathbf{y })\,\partial _t{\bar{\mathbf{v }}}^h(\tau ,\mathbf{y }) \,\mathrm{d}\mathbf{y }\,\mathrm{d}\tau \nonumber \\&= \int _{0}^{t}\int _{\Omega }\int _{-\infty }^{+\infty } \frac{d}{d\tau }j_h(\tau -s) \nabla \mathbf{X }(\tau ,\mathbf{y }){\bar{\mathbf{u }}}(\tau ,\mathbf{y }) \cdot \nabla \mathbf{X }(\tau ,\mathbf{y }){\bar{\mathbf{v }}}(s,\mathbf{y }) \,\mathrm{d}s\,\mathrm{d}\mathbf{y }\,\mathrm{d}\tau \nonumber \\&= -\int _{-\infty }^{+\infty }\int _{\Omega } {\bar{\mathbf{v }}}(s,\mathbf{y })\cdot \int _{0}^{t} \frac{d}{ds}j_h(s-t) \nabla \mathbf{X }(t,\mathbf{y })^T \nabla \mathbf{X }(t,\mathbf{y }){\bar{\mathbf{u }}}(t,\mathbf{y }) \,\mathrm{d}\tau \,\mathrm{d}\mathbf{y }\, \mathrm{d}s \nonumber \\&= -\int _{0}^{t}\int _{\Omega } {\bar{\mathbf{v }}}(s,\mathbf{y })\cdot \int _{-\infty }^{+\infty } \frac{d}{ds}j_h(s-t) \nabla \mathbf{X }(t,\mathbf{y })^T \nabla \mathbf{X }(t,\mathbf{y }){\bar{\mathbf{u }}}(t,\mathbf{y }) \,\mathrm{d}\tau \,\mathrm{d}\mathbf{y }\, \mathrm{d}s \nonumber \\&\quad + \int _{\Omega (t)}\mathbf{v }(t,\mathbf{x })\cdot \mathbf{u }(t,\mathbf{x })\,\mathrm{d}\mathbf{x }- \int _{\Omega }\mathbf{v }(0,\mathbf{x })\cdot \mathbf{u }(0,\mathbf{x })\,\mathrm{d}\mathbf{x }+ o(h). \end{aligned}$$
(A.26)

The last two equalities are simple consequences of the properties of the mollifier and Lebesgue differentiation theorem (as in the fixed domain case). Next, we calculate (A.26):

$$\begin{aligned} (A.26)&= -\int _{0}^{t}\int _{\Omega (s)} {\bar{\mathbf{v }}}(s,\mathbf{Y }(s,\mathbf{x }))\cdot \int _{-\infty }^{+\infty } \frac{d}{ds}j_h(s-\tau ) \nonumber \\&\quad \nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x }))^T \nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x })) {\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(s,\mathbf{x })) \,\mathrm{d}\tau \,\mathrm{d}\mathbf{x }\, \mathrm{d}s \nonumber \\&\quad = -\int _{0}^{t}\int _{\Omega (s)} {\bar{\mathbf{v }}}(s,\mathbf{Y }(s,\mathbf{x }))\cdot \frac{d}{ds}\Big (\int _{-\infty }^{+\infty } j_h(s-\tau ) \end{aligned}$$
(A.27)
$$\begin{aligned}&\nabla \mathbf{X }(\tau ,Y(s,\mathbf{x }))^T \nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x })){\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(s,\mathbf{x })) \,\,\mathrm{d}\tau \Big )\,\mathrm{d}\mathbf{x }\, \mathrm{d}s \nonumber \\&\quad +\int _{0}^{t}\int _{\Omega (s)} {\bar{\mathbf{v }}}(s,\mathbf{Y }(s,\mathbf{x }))\cdot \int _{-\infty }^{+\infty } j_h(s-\tau )\frac{d}{ds}\big (\nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x }))^T\big ) \end{aligned}$$
(A.28)
$$\begin{aligned}&\nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x })){\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(s,\mathbf{x })) \,\,\mathrm{d}\tau \,\mathrm{d}\mathbf{x }\, \mathrm{d}s \nonumber \\&\quad +\int _{0}^{t}\int _{\Omega (s)} {\bar{\mathbf{v }}}(s,\mathbf{Y }(s,\mathbf{x }))\cdot \int _{-\infty }^{+\infty } j_h(s-\tau ) \nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x }))^T\nonumber \\&\quad \frac{d}{ds}\big (\nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x })) {\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(s,\mathbf{x }))\big ) \,\,\mathrm{d}\tau \,\mathrm{d}\mathbf{x }\, \mathrm{d}s, \end{aligned}$$
(A.29)

and for (A.27) we get

$$\begin{aligned}&(A.27)\nonumber \\&\quad = -\int _{0}^{t}\int _{\Omega (s)} \mathbf{v }(s,\mathbf{x })\cdot \nabla \mathbf{Y }(s,\mathbf{x })^T \nonumber \\&\qquad \frac{d}{ds}\Big (\int _{-\infty }^{+\infty } j_h(s-\tau )\nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x }))^T \nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x })){\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(s,\mathbf{x })) \,\,\mathrm{d}\tau \Big )\,\mathrm{d}\mathbf{x }\, \mathrm{d}s\nonumber \\&\quad = -\int _{0}^{t}\int _{\Omega (s)} \mathbf{v }(s,\mathbf{x })\cdot \frac{d}{ds} \Big (\nabla \mathbf{Y }(s,\mathbf{x })^T \nonumber \\&\qquad \int _{-\infty }^{+\infty } j_h(s-\tau )\nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x }))^T \nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x })){\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(s,\mathbf{x })) \,\,\mathrm{d}\tau \Big )\,\mathrm{d}\mathbf{x }\, \mathrm{d}s \end{aligned}$$
(A.30)
$$\begin{aligned}&+ \int _{0}^{t}\int _{\Omega (s)} \mathbf{v }(s,\mathbf{x })\cdot \partial _s\nabla \mathbf{Y }(s,\mathbf{x })^T \nonumber \\&\qquad \int _{-\infty }^{+\infty } j_h(s-\tau )\nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x }))^T \nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x })){\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(s,\mathbf{x })) \,\,\mathrm{d}\tau \,\mathrm{d}\mathbf{x }\, \mathrm{d}s \end{aligned}$$
(A.31)

Now we can let \(h\rightarrow 0\). By Lemma A.1, we have

$$\begin{aligned} \mathrm{(A.30)} + \int \int \mathbf{v }\cdot \partial _t\mathbf{u }^h \rightarrow 0. \end{aligned}$$

The remaining terms do not contain the time derivative of \({\bar{\mathbf{u }}}^h\) or \({\bar{\mathbf{v }}}^h\), so we can directly pass to the limits. Using the property of the transformation \(\mathbf{X }\)

$$\begin{aligned} 0&=\frac{d}{dt}\big ( \nabla \mathbf{X }(t,\mathbf{Y }(t,\mathbf{x }))\nabla \mathbf{Y }(t,\mathbf{x }) \big )\\&= \frac{d}{dt}\big (\nabla \mathbf{X }(t,\mathbf{Y }(t,\mathbf{x })) \big )\nabla \mathbf{Y }(t,\mathbf{x }) + \nabla \mathbf{X }(t,\mathbf{Y }(t,\mathbf{x }))\partial _t\nabla \mathbf{Y }(t,\mathbf{x }), \end{aligned}$$

we get

$$\begin{aligned} (A.23)&= \int _{0}^{t} \int _{\Omega (\tau )} \mathbf{u }(\tau ,\mathbf{x })\cdot \frac{d}{d\tau } \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\,{\bar{\mathbf{v }}}^h(\tau ,\mathbf{Y }(\tau ,\mathbf{x })) \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \\&\rightarrow \int _{0}^{t}\int _{\Omega (\tau )} \mathbf{u }(\tau ,\mathbf{x })\cdot \frac{d}{d\tau } \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\,{\bar{\mathbf{v }}}(\tau ,\mathbf{Y }(\tau ,\mathbf{x })) \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \\&=-\int _{0}^{t}\int _{\Omega (\tau )} \mathbf{u }(\tau ,\mathbf{x })\cdot \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\,\partial _t\nabla \mathbf{Y }(\tau ,\mathbf{x })\,\mathbf{v }(\tau ,\mathbf{Y }(\tau ,\mathbf{x })) \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau , \\ (A.31)&= \int _{0}^{t}\int _{\Omega (s)} \mathbf{v }(s,\mathbf{x })\cdot \partial _s\nabla \mathbf{Y }(s,\mathbf{x })^T \\&\qquad \qquad \int _{-\infty }^{+\infty } j_h(s-\tau )\nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x }))^T \nabla \mathbf{X }(\tau ,\mathbf{Y }(s,\mathbf{x }))\,{\bar{\mathbf{u }}}(\tau ,\mathbf{Y }(s,\mathbf{x })) \,\mathrm{d}\tau \,\mathrm{d}\mathbf{x }\, \mathrm{d}s \\&\rightarrow \int _{0}^{t}\int _{\Omega (s)} \mathbf{v }(s,\mathbf{x })\cdot \partial _s\nabla \mathbf{Y }(s,\mathbf{x })^T \\&\qquad \qquad \nabla \mathbf{X }(s,\mathbf{Y }(s,\mathbf{x }))^T \nabla \mathbf{X }(s,\mathbf{Y }(s,\mathbf{x }))\, {\bar{\mathbf{u }}}(s,\mathbf{Y }(s,\mathbf{x })) \,\mathrm{d}\mathbf{x }\, \mathrm{d}s \\&= \int _{0}^{t}\int _{\Omega (s)} \nabla \mathbf{X }(s,\mathbf{Y }(s,\mathbf{x })) \partial _s\nabla \mathbf{Y }(s,\mathbf{x })\,\mathbf{v }(s,\mathbf{x })\cdot \mathbf{u }(s,\mathbf{Y }(s,\mathbf{x })) \,\mathrm{d}\mathbf{x }\, \mathrm{d}s. \end{aligned}$$

It follows that

$$\begin{aligned} (A.23)+(A.31)\rightarrow 0, \qquad h\rightarrow 0. \end{aligned}$$

Again, using the properties of the transformation of coordinates we get

$$\begin{aligned}&(A.25)+(A.28) \rightarrow -\int _{0}^{t}\int _{\Omega (\tau )} \nabla \mathbf{v }^T\mathbf{u }\cdot \partial _t\mathbf{X }, \end{aligned}$$
(A.32)
$$\begin{aligned}&(A.29) \rightarrow -\int _{0}^{t}\int _{\Omega (\tau )} \nabla \mathbf{u }^T\mathbf{v }\cdot \partial _t\mathbf{X }. \end{aligned}$$
(A.33)

Hence,

$$\begin{aligned} \begin{aligned}&(A.23) + (A.25) + (A.28) + (A.29) + (A.31)\\&\qquad \rightarrow -\int _{0}^{t}\int _{\Omega _F(\tau )} (\nabla \mathbf{v }^T\mathbf{u }+\nabla \mathbf{u }^T\mathbf{v })\cdot \partial _t\mathbf{X }= -\int _{0}^{t}\int _{\Omega _F(\tau )} \nabla (\mathbf{u }\cdot \mathbf{v })\cdot \partial _t\mathbf{X }. \end{aligned} \end{aligned}$$
(A.34)

Finally, we conclude

$$\begin{aligned}&\int _{0}^{t}\int _{\Omega (\tau )}\mathbf{u }\cdot \partial _t\mathbf{v }^h\,\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau + \int _{0}^{t}\int _{\Omega (\tau )}\mathbf{v }\cdot \partial _t\mathbf{u }^h \,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \\&\qquad \qquad \rightarrow -\int _{0}^{t}\int _{\Omega (\tau )} \nabla (\mathbf{u }\cdot \mathbf{v })\cdot \partial _t\mathbf{X }\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau + \int _{\Omega (t)}\mathbf{v }(t)\cdot \mathbf{u }(t) \,\mathrm{d}\mathbf{x }- \int _{\Omega }\mathbf{v }(0)\cdot \mathbf{u }(0)\,\mathrm{d}\mathbf{x }. \end{aligned}$$

Let us show (A.32) and (A.33):

Since

$$\begin{aligned} \nabla {\bar{\mathbf{v }}}^h \rightarrow \nabla {\bar{\mathbf{v }}} \quad \text {when }h\rightarrow 0 \quad \text {u } L^2L^2, \end{aligned}$$

we have

$$\begin{aligned} (A.25)&= \int _0^t\int _{\Omega _F(\tau )} \mathbf{u }(\tau ,\mathbf{x })\cdot \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\nabla {\bar{\mathbf{v }}}^h(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\partial _t\mathbf{Y }(\tau ,\mathbf{x })\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \\&\rightarrow \int _0^t\int _{\Omega _F(\tau )} \mathbf{u }(\tau ,\mathbf{x })\cdot \nabla \mathbf{X }(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\nabla {\bar{\mathbf{v }}}(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\partial _t\mathbf{Y }(\tau ,\mathbf{x })\,\mathrm{d}\mathbf{x }\,\mathrm{d}\tau \\&= \int _0^t\int _{\Omega _F(\tau )} \sum _{ijk}\mathbf{u }_i\partial _j\mathbf{X }_i\partial _k{\bar{\mathbf{v }}}\partial _t\mathbf{Y }_k = \int _0^t\int _{\Omega _F(\tau )} \sum _{ijk}\mathbf{u }_i\partial _j\mathbf{X }_i\frac{d}{d\mathbf{y }_k}(\nabla \mathbf{Y }\mathbf{v })_j\partial _t\mathbf{Y }_k \\&= \int _0^t\int _{\Omega _F(\tau )} \sum _{ijkl}\mathbf{u }_i\partial _j\mathbf{X }_i\frac{d}{d\mathbf{y }_k}(\partial _l\mathbf{Y }_j\mathbf{v }_l)\partial _t\mathbf{Y }_k \\&= \int _0^t\int _{\Omega _F(\tau )} \sum _{ijklm}\mathbf{u }_i\partial _j\mathbf{X }_i(\partial _m\partial _l\mathbf{Y }_j\mathbf{v }_l + \partial _l\mathbf{Y }_j\partial _m\mathbf{v }_l)\underbrace{\partial _k\mathbf{X }_m\partial _t\mathbf{Y }_k}_{(\nabla \mathbf{X }\partial _t\mathbf{Y })_{m}=-\partial _t\mathbf{X }_m} \\&= \int _0^t\int _{\Omega _F(\tau )}( \underbrace{\sum _{ijklm}\mathbf{u }_i\partial _j\mathbf{X }_i\partial _m\partial _l\mathbf{Y }_j\partial _k\mathbf{X }_m\partial _t\mathbf{Y }_k \mathbf{v }_l}_{I} - \underbrace{\sum _{ijlm}\mathbf{u }_i\partial _j\mathbf{X }_i\partial _l\mathbf{Y }_j\partial _t\mathbf{X }_m \partial _m\mathbf{v }_l}_{II}),\\ II&= \sum _{ijlm}\mathbf{u }_i \underbrace{\partial _j\mathbf{X }_i\partial _l\mathbf{Y }_j}_{\delta _{il}} \partial _t\mathbf{X }_m \partial _m\mathbf{v }_l = \sum _{im}\mathbf{u }_i\partial _t\mathbf{X }_m \partial _m\mathbf{v }_i = \nabla \mathbf{v }^T\mathbf{u }\cdot \partial _t\mathbf{X },\\ I&= \sum _{ijklm}\mathbf{u }_i\partial _j\mathbf{X }_i \underbrace{\partial _m\partial _l\mathbf{Y }_j\partial _k\mathbf{X }_m}_{\frac{d}{d\mathbf{y }_k}(\partial _l\mathbf{Y }_j)} \partial _t\mathbf{Y }_k \mathbf{v }_l = \sum _{ijkl}\mathbf{u }_i \underbrace{\partial _j\mathbf{X }_i\frac{d}{d\mathbf{y }_k}(\partial _l\mathbf{Y }_j)}_{= \frac{d}{d\mathbf{y }_k}(\partial _j\mathbf{X }_i\partial _l\mathbf{Y }_j)-\partial _k\partial _j\mathbf{X }_i\partial _l\mathbf{Y }_j} \partial _t\mathbf{Y }_k \mathbf{v }_l\\&= -\sum _{ijkl}\mathbf{u }_i \underline{\partial _k\partial _j\mathbf{X }_i}\partial _l\mathbf{Y }_j \underline{\partial _t\mathbf{Y }_k} \mathbf{v }_l =(*) = -\sum _{ijl}\mathbf{u }_i (\frac{d}{dt}(\nabla \mathbf{X })_{ij}-\partial _t(\nabla \mathbf{X })_{ij}) \partial _l\mathbf{Y }_j\mathbf{v }_l\\&= -\frac{d}{dt}\nabla \mathbf{X }^T\mathbf{u }\cdot \nabla \mathbf{Y }\mathbf{v }+ \partial _t\nabla \mathbf{X }^T\mathbf{u }\cdot \nabla \mathbf{Y }\mathbf{v }, \end{aligned}$$
$$\begin{aligned} (A.25)\rightarrow \int _{0}^{t}\int _{\Omega _F(\tau )}(-\frac{d}{dt}\nabla \mathbf{X }^T\mathbf{u }\cdot \nabla \mathbf{Y }\mathbf{v }+ \partial _t\nabla \mathbf{X }^T\mathbf{u }\cdot \nabla \mathbf{Y }\mathbf{v }- \nabla \mathbf{v }^T\mathbf{u }\cdot \partial _t\mathbf{X }), \end{aligned}$$
(A.35)
$$\begin{aligned} (A.28)&= \int _{0}^{t}\int _{\Omega _F(\tau )} \underbrace{{\bar{\mathbf{v }}}(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))}_{=\nabla \mathbf{Y }(\tau ,\mathbf{x })\mathbf{v }(\tau ,\mathbf{x })} \cdot \int _{-\infty }^{+\infty } j_h(\tau -s)\frac{d}{d\tau }\big (\nabla \mathbf{X }(s,\mathbf{Y }(\tau ,\mathbf{x }))^T\big ) \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \nabla \mathbf{X }(s,\mathbf{Y }(\tau ,\mathbf{x })){\bar{\mathbf{u }}}(s,\mathbf{Y }(\tau ,\mathbf{x })) \,\,\mathrm{d}s\,\mathrm{d}\mathbf{x }\, \mathrm{d}\tau \\&= \int _{0}^{t}\int _{\Omega _F(\tau )}\int _{-\infty }^{+\infty } \sum _{ijkl} \mathbf{v }_i\partial _i\mathbf{Y }_j j_h(\tau -s)\frac{d}{d\tau }\partial _j\mathbf{X }_k(s,\mathbf{Y }(\tau ,\mathbf{x })) \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \partial _l\mathbf{X }_k(s,\mathbf{Y }(\tau ,\mathbf{x })){\bar{\mathbf{u }}}_l(s,\mathbf{Y }(\tau ,\mathbf{x })) \,\,\mathrm{d}s\,\mathrm{d}\mathbf{x }\, \mathrm{d}\tau \\&= \int _{0}^{t}\int _{\Omega _F(\tau )}\int _{-\infty }^{+\infty } \sum _{ijklm} \mathbf{v }_i\partial _i\mathbf{Y }_j j_h(\tau -s)\partial _m\partial _j\mathbf{X }_k(s,\mathbf{Y }(\tau ,\mathbf{x }))\partial _t\mathbf{Y }_m \\&\qquad \qquad \qquad \qquad \qquad \qquad \qquad \partial _l\mathbf{X }_k(s,\mathbf{Y }(\tau ,\mathbf{x })){\bar{\mathbf{u }}}_l(s,\mathbf{Y }(\tau ,\mathbf{x })) \,\,\mathrm{d}s\,\mathrm{d}\mathbf{x }\, \mathrm{d}\tau \\&\rightarrow \int _{0}^{t}\int _{\Omega _F(\tau )} \sum _{ijklm} \mathbf{v }_i\partial _i\mathbf{Y }_j \underbrace{\partial _m\partial _j\mathbf{X }_k\partial _t\mathbf{Y }_m }_{\frac{d}{dt}(\nabla \mathbf{X })_{kj}-\partial _t(\nabla \mathbf{X })_{kj}} \underbrace{\partial _l\mathbf{X }_k{\bar{\mathbf{u }}}_l}_{\mathbf{u }_k} \,\,\mathrm{d}s\,\mathrm{d}\mathbf{x }\, \mathrm{d}\tau \\&=-(*)=-\int \int I = \int _{0}^{t}\int _{\Omega _F(\tau )} (\nabla \mathbf{Y }\mathbf{v }\cdot \frac{d}{dt}\nabla \mathbf{X }^T\mathbf{u }-\nabla \mathbf{Y }\mathbf{v }\cdot \partial _t\nabla \mathbf{X }^T\mathbf{u }) \,\mathrm{d}\mathbf{x }\, \mathrm{d}\tau . \end{aligned}$$

It follows

$$\begin{aligned} \mathrm{(A.25)}+ \mathrm{(A.28)} \rightarrow -\int _{0}^{t}\int _{\Omega _F(\tau )} \nabla \mathbf{v }^T\mathbf{u }\cdot \partial _t\mathbf{X }. \end{aligned}$$

It remains to prove (A.29):

$$\begin{aligned} (A.29)&= \int _{0}^{t}\int _{\Omega _F(\tau )} {\bar{\mathbf{v }}}(\tau ,\mathbf{Y }(\tau ,\mathbf{x }))\cdot \int _{-\infty }^{+\infty } j_h(\tau -s)\nabla \mathbf{X }(s,\mathbf{Y }(\tau ,\mathbf{x }))^T\\&\qquad \qquad \qquad \qquad \qquad \qquad \frac{d}{d\tau }\big (\nabla \mathbf{X }(s,\mathbf{Y }(\tau ,\mathbf{x })) {\bar{\mathbf{u }}}(s,\mathbf{Y }(\tau ,\mathbf{x }))\big ) \,\,\mathrm{d}s\,\mathrm{d}\mathbf{x }\, \mathrm{d}\tau \\&= \int _{0}^{t}\int _{\Omega _F(\tau )} \sum _{ijk} {\bar{\mathbf{v }}}_i \int _{-\infty }^{+\infty } j_h(\tau -s)\partial _i\mathbf{X }_j\frac{d}{d\tau }(\partial _k\mathbf{X }_j{\bar{\mathbf{u }}}_k) \\&= \int _{0}^{t}\int _{\Omega _F(\tau )} \sum _{ijkl} {\bar{\mathbf{v }}}_i \int _{-\infty }^{+\infty } j_h(\tau -s)\partial _i\mathbf{X }_j (\partial _l\partial _k\mathbf{X }_j{\bar{\mathbf{u }}}_k + \partial _k\mathbf{X }_j\partial _l{\bar{\mathbf{u }}}_k)\partial _t\mathbf{Y }_l \\&\rightarrow \int _{0}^{t}\int _{\Omega _F(\tau )} \sum _{ijkl} {\bar{\mathbf{v }}}_i \partial _i\mathbf{X }_j \underbrace{(\partial _l\partial _k\mathbf{X }_j{\bar{\mathbf{u }}}_k + \partial _k\mathbf{X }_j\partial _l{\bar{\mathbf{u }}}_k)}_{\frac{d}{d\mathbf{y }_l}(\nabla \mathbf{X }{\bar{\mathbf{u }}})_j=\frac{d}{d\mathbf{y }_l}\mathbf{u }_j=(\nabla \mathbf{u }\nabla \mathbf{X })_{jl}} \partial _t\mathbf{Y }_l \\&= \int _{0}^{t}\int _{\Omega _F(\tau )} {\bar{\mathbf{v }}}\cdot \nabla \mathbf{X }^T \nabla \mathbf{u }\nabla \mathbf{X }\partial _t\mathbf{Y }= \int _{0}^{t}\int _{\Omega _F(\tau )} \underbrace{\nabla \mathbf{X }{\bar{\mathbf{v }}}}_{=\mathbf{v }}\cdot \nabla \mathbf{u }\underbrace{\nabla \mathbf{X }\partial _t\mathbf{Y }}_{=-\partial _t\mathbf{X }} \\&= -\int _{0}^{t}\int _{\Omega _F(\tau )} \mathbf{v }\cdot \nabla \mathbf{u }\partial _t\mathbf{X }= -\int _{0}^{t}\int _{\Omega _F(\tau )} \nabla \mathbf{u }^T \mathbf{v }\cdot \partial _t\mathbf{X }. \end{aligned}$$

\(\square \)

1.3 Weak Formulation—Details

In this subsection we give the remaining technical details of the proof of Proposition 2.1. For simplicity of notation we denote:

$$\begin{aligned} \mathbf{X }={\widetilde{\mathbf{X }}}_2, \, \mathbf{x }=\mathbf{x }_2, \, \mathbf{Y }={\widetilde{\mathbf{X }}}_1, \, \mathbf{y }=\mathbf{x }_1 \end{aligned}$$

and

$$\begin{aligned} (\mathbf{U },P,\mathbf{A },{\varvec{\Omega }}) = (\mathbf{U }_{2},P_{2},\mathbf{A }_{2},{\varvec{\Omega }}_{2}),\, (\mathbf{u },p,\mathbf{a },{\varvec{\omega }}) = (\mathbf{u }_{2},p_{2},\mathbf{a }_{2},{\varvec{\omega }}_{2}). \end{aligned}$$

The fluid time-derivative term.

$$\begin{aligned} \mathbf{u }\cdot \partial _t{\varvec{\varphi }}= \mathbf{U }\cdot \partial _t{\varvec{\psi }}-{\mathcal {M}}\mathbf{U }\cdot {\varvec{\psi }}+ \nabla (\mathbf{U }\cdot {\varvec{\psi }})\cdot \partial _t\mathbf{Y }. \end{aligned}$$

Proof

We have

$$\begin{aligned} \mathbf{u }\cdot \partial _t{\varvec{\varphi }}&= \nabla \mathbf{X }\mathbf{U }\cdot \frac{d}{dt}(\nabla \mathbf{Y }^T{\varvec{\psi }}) \\&= \nabla \mathbf{X }\mathbf{U }\cdot (\partial _t\nabla \mathbf{Y }^T{\varvec{\psi }}+ \nabla \mathbf{Y }^T\partial _t{\varvec{\psi }}+ \nabla \mathbf{Y }^T\nabla {\varvec{\psi }}\partial _t\mathbf{Y }) \\&= \partial _t\nabla \mathbf{Y }\nabla \mathbf{X }\mathbf{U }\cdot {\varvec{\psi }}+ \nabla \mathbf{Y }\nabla \mathbf{X }\mathbf{U }\cdot \partial _t{\varvec{\psi }}+ \nabla \mathbf{Y }\nabla \mathbf{X }\mathbf{U }\cdot \nabla {\varvec{\psi }}\partial _t\mathbf{Y }. \end{aligned}$$

The property of the transformation \(\mathbf{X }\)

$$\begin{aligned} \nabla \mathbf{X }(t,\mathbf{Y }(t,\mathbf{x })))\nabla \mathbf{Y }(t,\mathbf{x })={\mathbb {I}} \end{aligned}$$
(A.36)

implies

$$\begin{aligned} \mathbf{u }\cdot \partial _t{\varvec{\varphi }}= \mathbf{U }\cdot \partial _t{\varvec{\psi }}+ \underbrace{\partial _t\nabla \mathbf{Y }\nabla \mathbf{X }\mathbf{U }\cdot {\varvec{\psi }}}_{I} + \nabla {\varvec{\psi }}^T\mathbf{U }\cdot \partial _t\mathbf{Y }\end{aligned}$$

and by definition of \({\mathcal {M}}\) we have

$$\begin{aligned} {\mathcal {M}}\mathbf{U }\cdot {\varvec{\psi }}= \underbrace{\nabla \mathbf{U }\partial _t\mathbf{Y }\cdot \psi }_{=\nabla \mathbf{U }^T{\varvec{\psi }}\cdot \partial _t\mathbf{Y }} + \underbrace{\nabla \mathbf{Y }\partial _t\nabla \mathbf{X }\mathbf{U }\cdot {\varvec{\psi }}}_{II} + \underbrace{\sum _{ijk}\Gamma _{jk}^i\partial _t\mathbf{Y }_k\mathbf{U }_j{\varvec{\psi }}_i}_{III}. \end{aligned}$$

The identity (A.36) gives

$$\begin{aligned} 0 = \frac{d}{dt}(\nabla \mathbf{Y }\nabla \mathbf{X })_{ij} = (\partial _t\nabla \mathbf{Y }\nabla \mathbf{X })_{ij} + (\nabla \mathbf{Y }\partial _t\nabla \mathbf{X })_{ij} + \sum _{k} \Gamma _{kj}^i\partial _t\mathbf{Y }_k. \end{aligned}$$

Multiplying this equality by \(\mathbf{U }_j{\varvec{\psi }}_i\) and summing over ij, we get

$$\begin{aligned} I = -(II+III) = -{\mathcal {M}}\mathbf{U }\cdot {\varvec{\psi }}+ \nabla \mathbf{U }^T{\varvec{\psi }}\cdot \partial _t\mathbf{Y }. \end{aligned}$$

Finally, we get

$$\begin{aligned} \mathbf{u }\cdot \partial _t{\varvec{\varphi }}&= \mathbf{U }\cdot \partial _t{\varvec{\psi }}-{\mathcal {M}}\mathbf{U }\cdot {\varvec{\psi }}+ \nabla \mathbf{U }^T{\varvec{\psi }}\cdot \partial _t\mathbf{Y }+ \nabla {\varvec{\psi }}^T\mathbf{U }\cdot \partial _t\mathbf{Y }\\&= \mathbf{U }\cdot \partial _t{\varvec{\psi }}-{\mathcal {M}}\mathbf{U }\cdot {\varvec{\psi }}+ \nabla (\mathbf{U }\cdot {\varvec{\psi }})\cdot \partial _t\mathbf{Y }. \end{aligned}$$

\(\square \)

Convective term.

$$\begin{aligned} \mathbf {u }\otimes \mathbf {u }:\nabla {\varvec{\varphi }}= \mathbf {U }\otimes \mathbf {U }:\nabla {\varvec{\psi }}^T - \widetilde{{\mathcal {N}}}\mathbf {U }\cdot {\varvec{\psi }} \end{aligned}$$

Proof

We derive the convective term by using a known identity

$$\begin{aligned} \mathbf{u }\otimes \mathbf{u }:\nabla {\varvec{\varphi }}= \mathop {\mathrm{div}}\nolimits ((\mathbf{u }\cdot {\varvec{\varphi }})\mathbf{u })-(\mathbf{u }\cdot \nabla )\mathbf{u }\cdot {\varvec{\varphi }}. \end{aligned}$$

It is easy to prove (see [23]) that

$$\begin{aligned} \nabla \mathbf{Y }(\mathbf{u }\cdot \nabla )\mathbf{u }={\mathcal {N}}\mathbf{U }, \end{aligned}$$

which implies

$$\begin{aligned} (\mathbf{u }\cdot \nabla )\mathbf{u }\cdot {\varvec{\varphi }}=(\mathbf{u }\cdot \nabla )\mathbf{u }\cdot \nabla \mathbf{Y }^T{\varvec{\psi }}=\nabla \mathbf{Y }(\mathbf{u }\cdot \nabla )\mathbf{u }\cdot {\varvec{\psi }}={\mathcal {N}}\mathbf{U }\cdot {\varvec{\psi }}. \end{aligned}$$

On the other side we conclude

$$\begin{aligned} \mathop {\mathrm{div}}\nolimits ((\mathbf{u }\cdot {\varvec{\varphi }})\mathbf{u })&= \nabla (\mathbf{u }\cdot {\varvec{\varphi }})\cdot \mathbf{u }= \nabla _x(\nabla \mathbf{X }\,\mathbf{U }\cdot \nabla \mathbf{Y }^T{\varvec{\psi }})\cdot \nabla \mathbf{X }\,\mathbf{U }= \nabla _x(\mathbf{U }\cdot {\varvec{\psi }})\cdot \nabla \mathbf{X }\,\mathbf{U }\\&= (\nabla \mathbf{Y }^T\nabla \mathbf{U }^T{\varvec{\psi }}+ \nabla \mathbf{Y }^T\nabla {\varvec{\psi }}^T\mathbf{U })\cdot \nabla \mathbf{X }\,\mathbf{U }= (\nabla \mathbf{U }^T{\varvec{\psi }}+ \nabla {\varvec{\psi }}^T\mathbf{U })\cdot \mathbf{U }\\&=\nabla (\mathbf{U }\cdot {\varvec{\psi }})\cdot \mathbf{U }\\&= \mathbf{U }\cdot \nabla \mathbf{U }\cdot {\varvec{\psi }}+ \mathbf{U }\otimes \mathbf{U }:\nabla \psi ^T. \end{aligned}$$

Therefore,

$$\begin{aligned} \mathbf {u }\otimes \mathbf {u }:\nabla {\varvec{\varphi }}= \mathbf {U }\cdot \nabla \mathbf {U }\cdot {\varvec{\psi }}+ \mathbf {U }\otimes \mathbf {U }:\nabla {\varvec{\psi }}^T - {\mathcal {N}}\mathbf {U }\cdot {\varvec{\psi }}= \mathbf {U }\otimes \mathbf {U }:\nabla {\varvec{\psi }}^T - \widetilde{{\mathcal {N}}}\mathbf {U }\cdot {\varvec{\psi }}. \end{aligned}$$

\(\square \)

Diffusive term.

$$\begin{aligned} \int _{\Omega _F(\tau )} 2\,{{\mathbb {D}}}\mathbf{u }:{{\mathbb {D}}}{\varvec{\varphi }}= \left\langle {\mathcal {L}}\mathbf{U }, {\varvec{\psi }}\right\rangle , \end{aligned}$$

where

$$\begin{aligned} \left\langle {\mathcal {L}}\mathbf{U }, {\varvec{\psi }}\right\rangle= & {} \int _{\Omega _F(\tau )} \big (\sum _{ijk} (g^{jk}\partial _j\mathbf{U }_{i}\partial _k{\varvec{\psi }}_i + g^{jk}\partial _k\mathbf{U }_i\partial _i{\varvec{\psi }}_j) - \sum _{ijkl} (g^{kl}+\partial _l\mathbf{Y }_k)\Gamma _{li}^j\partial _k\mathbf{U }_{i}{\varvec{\psi }}_j\\&\quad + \sum _{ijkl} (g^{kl}\Gamma _{li}^j\mathbf{U }_{i}\partial _k{\varvec{\psi }}_j + g^{jl}\Gamma _{li}^k\mathbf{U }_i\partial _k{\varvec{\psi }}_j) - \sum _{ijklm} (g^{kl}+\partial _k\mathbf{Y }_l)\Gamma _{li}^m\Gamma _{km}^j\mathbf{U }_{i}{\varvec{\psi }}_j \big ). \end{aligned}$$

Proof

We have

$$\begin{aligned} 2{{\mathbb {D}}}\mathbf{u }:{{\mathbb {D}}}{\varvec{\varphi }}= 2{{\mathbb {D}}}\mathbf{u }:\nabla {\varvec{\varphi }}= \nabla \mathbf{u }:\nabla {\varvec{\varphi }}+ \nabla \mathbf{u }^T:\nabla {\varvec{\varphi }}\end{aligned}$$

For the first term we get

$$\begin{aligned} \nabla \mathbf{u }:\nabla {\varvec{\varphi }}&= \sum _{ij} \partial _j\mathbf{u }_{i}\partial _j{\varvec{\psi }}_i = \sum _{ij} \frac{d}{d\mathbf{x }_j}(\nabla \mathbf{X }\mathbf{U })_i\frac{d}{d\mathbf{x }_j}(\nabla \mathbf{Y }^T{\varvec{\psi }})_i\\&= \sum _{ijkl} \frac{d}{d\mathbf{x }_j}(\partial _k\mathbf{X }_i\mathbf{U }_k)\frac{d}{d\mathbf{x }_j}(\partial _i\mathbf{Y }_l{\varvec{\psi }}_l)\\&= \sum _{ijklmp} (\partial _m\partial _k\mathbf{X }_i\mathbf{U }_k +\partial _k\mathbf{X }_i\partial _m\mathbf{U }_k) \underline{\partial _j\mathbf{Y }_m \partial _j\mathbf{Y }_p}(\frac{d}{d\mathbf{y }_p}\partial _i\mathbf{Y }_l{\varvec{\psi }}_l + \partial _i\mathbf{Y }_l\partial _p{\varvec{\psi }}_l)\\&= \underbrace{\sum _{iklmp} g^{mp}\partial _m\partial _k\mathbf{X }_i\partial _{\mathbf{y }_p}\partial _i\mathbf{Y }_l\mathbf{U }_k{\varvec{\psi }}_l}_{I} + \underbrace{\sum _{iklmp} g^{mp}\partial _m\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l\mathbf{U }_k\partial _p{\varvec{\psi }}_l}_{II}\\&\quad +\underbrace{\sum _{iklmp} g^{mp}\partial _k\mathbf{X }_i\partial _{\mathbf{y }_p}\partial _i\mathbf{Y }_l\partial _m\mathbf{U }_k{\varvec{\psi }}_l}_{III} + \underbrace{\sum _{iklmp} g^{mp}\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l\partial _m\mathbf{U }_k\partial _p{\varvec{\psi }}_l}_{IV},\\ II&= \sum _{klmp} g^{mp}(\sum _{i}\partial _m\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l)\mathbf{U }_k\partial _p{\varvec{\psi }}_l = \sum _{klmp} g^{mp}\Gamma _{mk}^l\mathbf{U }_k\partial _p{\varvec{\psi }}_l,\\ IV&= \sum _{klmp} g^{mp}(\sum _{i}\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l)\partial _m\mathbf{U }_k\partial _p{\varvec{\psi }}_l = \sum _{kmp} g^{mp}\partial _m\mathbf{U }_k\partial _p{\varvec{\psi }}_k,\\ III&= \sum _{iklmp} g^{mp}(\partial _p(\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l) - \partial _p\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l)\partial _m\mathbf{U }_k{\varvec{\psi }}_l = -\sum _{klmp} g^{mp}\Gamma _{pk}^l\partial _m\mathbf{U }_k{\varvec{\psi }}_l,\\ I&= \sum _{iklmp} g^{mp}(\partial _p(\partial _m\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l) - \partial _p\partial _m\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l)\mathbf{U }_k{\varvec{\psi }}_l\\&= \underbrace{\sum _{klmp} g^{mp}\partial _p(\Gamma _{mk}^l)\mathbf{U }_k{\varvec{\psi }}_l}_{V} - \underbrace{\sum _{iklmp} g^{mp} \partial _p\partial _m\partial _k\mathbf{X }_i\partial _i\mathbf{Y }_l\mathbf{U }_k{\varvec{\psi }}_l}_{VI},\\ VI&= ([23]) = \sum _{iklmp} g^{mp} \partial _p(\sum _{q}\Gamma _{mk}^q\partial _q\mathbf{X }_i)\partial _i\mathbf{Y }_l\mathbf{U }_k{\varvec{\psi }}_l\\&= \sum _{iklmpq} g^{mp} \partial _p\Gamma _{mk}^q\underline{\partial _q\mathbf{X }_i\partial _i\mathbf{Y }_l}\mathbf{U }_k{\varvec{\psi }}_l + \sum _{iklmpq} g^{mp} \Gamma _{mk}^q\underline{\partial _p\partial _q\mathbf{X }_i\partial _i\mathbf{Y }_l}\mathbf{U }_k{\varvec{\psi }}_l\\&= \underbrace{\sum _{klmp} g^{mp} \partial _p\Gamma _{mk}^l\mathbf{U }_k{\varvec{\psi }}_l}_{= V} + \sum _{klmpq} g^{mp} \Gamma _{mk}^q\Gamma _{pq}^l\mathbf{U }_k{\varvec{\psi }}_l. \end{aligned}$$

It follows

$$\begin{aligned} I&= - \sum _{klmpq} g^{mp} \Gamma _{mk}^q\Gamma _{pq}^l\mathbf{U }_k{\varvec{\psi }}_l. \end{aligned}$$

Hence,

$$\begin{aligned} \nabla \mathbf{u }:\nabla {\varvec{\varphi }}= \sum _{ijk} g^{jk}\partial _j\mathbf{U }_{i}\partial _k{\varvec{\psi }}_i - \sum _{ijkl} g^{kl}\Gamma _{li}^j\partial _k\mathbf{U }_{i}{\varvec{\psi }}_j + \sum _{ijkl} g^{kl}\Gamma _{li}^j\mathbf{U }_{i}\partial _k{\varvec{\psi }}_j - \sum _{ijklm} g^{kl}\Gamma _{li}^m\Gamma _{km}^j\mathbf{U }_{i}{\varvec{\psi }}_j. \end{aligned}$$

Similarly, we get

$$\begin{aligned} \nabla \mathbf{u }^T:\nabla {\varvec{\varphi }}&= \sum _{ij} \partial _i\mathbf{u }_{j}\partial _j{\varvec{\psi }}_i = \sum _{ij} \frac{d}{d\mathbf{x }_i}(\nabla \mathbf{X }\mathbf{U })_j\frac{d}{d\mathbf{x }_j}(\nabla \mathbf{Y }^T{\varvec{\psi }})_i\\&= \sum _{ijkl} \frac{d}{d\mathbf{x }_i}(\partial _k\mathbf{X }_j\mathbf{U }_k)\frac{d}{d\mathbf{x }_j}(\partial _i\mathbf{Y }_l{\varvec{\psi }}_l)\\&= \sum _{ijklmp} ( \partial _m\partial _k\mathbf{X }_j\mathbf{U }_k + \partial _k\mathbf{X }_j\partial _m\mathbf{U }_k )\partial _i\mathbf{Y }_m ( \partial _{j}\partial _i\mathbf{Y }_l{\varvec{\psi }}_l + \partial _i\mathbf{Y }_l\partial _p{\varvec{\psi }}_l\partial _{j}\mathbf{Y }_p)\\&= \underbrace{ \sum _{iklmp} \partial _i\mathbf{Y }_m\partial _m\partial _k\mathbf{X }_j \partial _{j}\partial _i\mathbf{Y }_l\mathbf{U }_k{\varvec{\psi }}_l }_{I'} + \underbrace{ \sum _{iklmp} \partial _i\mathbf{Y }_m\partial _i\mathbf{Y }_l \partial _m\partial _k\mathbf{X }_j\partial _{j}\mathbf{Y }_p\mathbf{U }_k \partial _p{\varvec{\psi }}_l }_{II'}\\&\quad +\underbrace{ \sum _{iklmp} \partial _i\mathbf{Y }_m\partial _k\mathbf{X }_j \partial _{j}\partial _i\mathbf{Y }_l \partial _m\mathbf{U }_k{\varvec{\psi }}_l }_{III'} + \underbrace{ \sum _{iklmp} \partial _i\mathbf{Y }_m \partial _i\mathbf{Y }_l\partial _k\mathbf{X }_j\partial _{j}\mathbf{Y }_p \partial _m\mathbf{U }_k\partial _p{\varvec{\psi }}_l }_{IV'},\\ II'&= \sum _{klmp} g^{ml}\Gamma _{mk}^p\mathbf{U }_k\partial _p{\varvec{\psi }}_l,\\ IV'&= \sum _{klmp} g^{ml}\delta _{pk} \partial _m\mathbf{U }_k\partial _p{\varvec{\psi }}_l = \sum _{klm} g^{ml}\partial _m\mathbf{U }_k\partial _k{\varvec{\psi }}_l,\\ III'&= \sum _{iklmp} \partial _i\mathbf{Y }_m \left( \partial _i (\partial _k\mathbf{X }_j \partial _{j}\mathbf{Y }_l) - \partial _i\partial _k\mathbf{X }_j \partial _{j}\mathbf{Y }_l \right) \partial _m\mathbf{U }_k{\varvec{\psi }}_l = -\sum _{iklm} \partial _i\mathbf{Y }_m \Gamma _{ik}^l \partial _m\mathbf{U }_k{\varvec{\psi }}_l,\\ I'&= \sum _{ijklmp} \partial _i\mathbf{Y }_m \left( \partial _i(\partial _m\partial _k\mathbf{X }_j \partial _{j}\mathbf{Y }_l) - \partial _i\partial _m\partial _k\mathbf{X }_j \partial _{j}\mathbf{Y }_l \right) \mathbf{U }_k{\varvec{\psi }}_l\\&= \underbrace{\sum _{iklmp} \partial _i\mathbf{Y }_m \partial _i\Gamma _{mk}^l\mathbf{U }_k{\varvec{\psi }}_l}_{V'} - \underbrace{\sum _{ijklmp} \partial _i\mathbf{Y }_m \partial _i\partial _m\partial _k\mathbf{X }_j\partial _j\mathbf{Y }_l\mathbf{U }_k{\varvec{\psi }}_l}_{VI'},\\ VI'&= ([23]) =\sum _{ijklmp} \partial _i\mathbf{Y }_m \partial _i(\sum _{q}\Gamma _{mk}^q\partial _q\mathbf{X }_j) \partial _j\mathbf{Y }_l\mathbf{U }_k{\varvec{\psi }}_l\\&= \sum _{ijklmpq} \partial _i\mathbf{Y }_m \partial _i\Gamma _{mk}^q \underline{\partial _q\mathbf{X }_j\partial _j\mathbf{Y }_l} \mathbf{U }_k{\varvec{\psi }}_l + \sum _{ijklmpq} \partial _i\mathbf{Y }_m \Gamma _{mk}^q \underline{\partial _i\partial _q\mathbf{X }_j\partial _j\mathbf{Y }_l} \mathbf{U }_k{\varvec{\psi }}_l\\&= \underbrace{\sum _{iklmp} \partial _i\mathbf{Y }_m \partial _i\Gamma _{mk}^l \mathbf{U }_k{\varvec{\psi }}_l}_{= V'} + \sum _{iklmpq} \partial _i\mathbf{Y }_m \Gamma _{mk}^q\Gamma _{iq}^l \mathbf{U }_k{\varvec{\psi }}_l \end{aligned}$$

It follows

$$\begin{aligned} I'&= - \sum _{iklmpq} \partial _i\mathbf{Y }_m \Gamma _{mk}^q\Gamma _{iq}^l \mathbf{U }_k{\varvec{\psi }}_l. \end{aligned}$$

Therefore,

$$\begin{aligned} \nabla \mathbf{u }^T:\nabla {\varvec{\varphi }}= \sum _{ijk} g^{jk}\partial _k\mathbf{U }_i\partial _i{\varvec{\psi }}_j -\sum _{iklm} \partial _l\mathbf{Y }_k \Gamma _{il}^j \partial _k\mathbf{U }_i{\varvec{\psi }}_j + \sum _{ijkl} g^{jl}\Gamma _{li}^k\mathbf{U }_i\partial _k{\varvec{\psi }}_j - \sum _{ijklm} \partial _k\mathbf{Y }_l \Gamma _{li}^m\Gamma _{km}^j \mathbf{U }_i{\varvec{\psi }}_j \end{aligned}$$

Finally, we get

$$\begin{aligned}&\left\langle {\mathcal {L}}\mathbf{U }, {\varvec{\psi }}\right\rangle :=\int _{\Omega _F(\tau )} 2\,{{\mathbb {D}}}\mathbf{u }:{{\mathbb {D}}}{\varvec{\varphi }}= \int _{\Omega _F(\tau )} \left( \nabla \mathbf{u }:\nabla {\varvec{\varphi }}+ \nabla \mathbf{u }^T:\nabla {\varvec{\varphi }}\right) \\&\quad = \frac{1}{2}\int _{\Omega _F(\tau )} \big (\sum _{ijk} (g^{jk}\partial _j\mathbf{U }_{i}\partial _k{\varvec{\psi }}_i + g^{jk}\partial _k\mathbf{U }_i\partial _i{\varvec{\psi }}_j) - \sum _{ijkl} (g^{kl}+\partial _l\mathbf{Y }_k)\Gamma _{li}^j\partial _k\mathbf{U }_{i}{\varvec{\psi }}_j\\&\qquad + \sum _{ijkl} (g^{kl}\Gamma _{li}^j\mathbf{U }_{i}\partial _k{\varvec{\psi }}_j + g^{jl}\Gamma _{li}^k\mathbf{U }_i\partial _k{\varvec{\psi }}_j) - \sum _{ijklm} (g^{kl}+\partial _k\mathbf{Y }_l)\Gamma _{li}^m\Gamma _{km}^j\mathbf{U }_{i}{\varvec{\psi }}_j \big ). \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muha, B., Nečasová, Š. & Radošević, A. A Uniqueness Result for 3D Incompressible Fluid-Rigid Body Interaction Problem. J. Math. Fluid Mech. 23, 1 (2021). https://doi.org/10.1007/s00021-020-00542-2

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-020-00542-2

Navigation