Skip to main content
Log in

Efficiency improvement of passivated emitter and rear cells using annealing process before surface passivation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermal annealing and effective surface passivation are significant to achieve high conversion efficiency (η) of passivated emitter and rear cells (PERC). Thus, we added an annealing process before front and rear surface passivation in the existing production line. We found that the front recombination current (J0,f) and the rear recombination current (J0,r) of annealed PERCs are both lower than baseline PERCs without annealing process, which means better defect repair and passivation effect were achieved. And the average η of annealed PERCs reaches 21.79%, which is 0.23% absolutely higher than that of the baseline PERCs. After that, we further explored the influence of gas composition (0%, 5% and 10% oxygen concentration in nitrogen atmosphere) during annealing process. We found that as the oxygen concentration increases, J0,fs and J0,rs of annealed PERCs (0%, 5%, 10%) are all lower than those of baseline PERCs. Meanwhile, the annealed PERCs (0%, 5%, 10%) get the average η of 21.77%, 21.82% and 21.84% respectively, possessing absolute efficiency increase over the baseline PERCs with the average η of 21.67%. The present work could help enhance the understanding of passivation property and improve the performance of industrial PERC cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. X. Li, D. Yang, X. Yu, D. Que, J. Cryst. Growth 21, 3069–3074 (2010)

    Article  Google Scholar 

  2. W. Füssel, M. Schmidt, H. Angermann, G. Mende, H. Flietner, Nucl. Instrum. Methods Phys. Res. A 377, 177–183 (1996)

    Article  Google Scholar 

  3. O. Schultz, S.W. Glunz, G.P. Willeke, Prog. Photovolt. Res. Appl. 12, 553–558 (2004)

    Article  CAS  Google Scholar 

  4. J. Seiffe, M. Hofmann, J. Rentsch, R. Preu, J. Appl. Phys. 109, 064505 (2011)

    Article  Google Scholar 

  5. N.M. Terlinden, G. Dingemans, V. Vandalon, R.H.E.C. Bosch, W.M.M. Kessels, J. Appl. Phys. 115, 033708 (2014)

    Article  Google Scholar 

  6. G. Dingemans, W.M.M. Kessels, J. Vac. Sci. Technol. A 30, 040802 (2012)

    Article  Google Scholar 

  7. S. Joonwichien, Y. Kida, M. Moriya, S. Utsunomiya, K. Shirasawa, H. Takato, Sol. Energy Mater. Sol. Cells 186, 84–91 (2018)

    Article  CAS  Google Scholar 

  8. M.J. Kerr, A. Cuevas, Semicond. Sci. Technol. 17, 35–38 (2002)

    Article  CAS  Google Scholar 

  9. Y. Watanabe, Jpn. J. Appl. Phys. 38, 31–35 (1999)

    Article  CAS  Google Scholar 

  10. S. Hu, J. Appl. Phys. 70, 53–80 (1991)

    Article  Google Scholar 

  11. L. Xu, K. Weber, A. Fell, Z. Hameiri, S.P. Phang, X. Yang, E. Franklin, IEEE J. Photovolt. 2, 596–600 (2014)

    Google Scholar 

  12. Z. Hameiri, T. Puzzer, L. Mai, A.B. Sproul, S.R. Wenham, Prog. Photovolt. Res. Appl. 19, 391–405 (2011)

    Article  CAS  Google Scholar 

  13. Sugianto, B.S. Tjahjono, J.H. Guo, S.R. Wenham, 22nd European Photovoltaic Solar Energy Conference, 3 September 2007

  14. G. Agostinelli, P. Choulat, H. Dekkers, S. De Wolf, Proceedings of the 20th European Photovoltaic Solar Energy Conference and Exhibition, 10 June 2005

  15. B. Hoex, J. Schmidt, P. Pohl, M.C.M. van de Sanden, W.M.M. Kessels, J. Appl. Phys. 104, 044903 (2008)

    Article  Google Scholar 

  16. T. Dullweber, J. Schmidt, IEEE J. Photovolt. 6, 1366 (2016)

    Article  Google Scholar 

  17. R.L. Van Meirhaeghe, W.H. Laflere, F. Cardon, J. Appl. Phys. 76, 403–406 (1994)

    Article  Google Scholar 

  18. D.E. Kane, R.M. Swanson, 18th IEEE Photovoltaic Specialists Conference, Las Vegas, NV, USA, 1985

  19. R.A. Sinton, R.M. Swanson, IEEE Trans. Electron Devices 34, 1380–1389 (1987)

    Article  Google Scholar 

  20. Y.F. Zhuang, S.H. Zhong, X.J. Liang, H.J. Kang, Z.P. Li, W.Z. Shen, Sol. Energy Mater. Sol. Cells 193, 379–386 (2019)

    Article  CAS  Google Scholar 

  21. S. Mack, A. Wolf, A. Walczak, B. Thaidigsmann, E.A. Wotke, J.J. Spiegelman, R. Preu, D. Biro, Sol. Energy Mater. Sol. Cells 95, 2570 (2011)

    Article  CAS  Google Scholar 

  22. J. Schmidt, M. Kerr, A. Cuevas, Semicond. Sci. Technol. 16, 164–170 (2011)

    Article  Google Scholar 

  23. D. Schuldis, A. Richter, J. Benick, P. Saint-Cast, M. Hermle, S.W. Glunz, Appl. Phys. Lett. 105, 231601 (2014)

    Article  Google Scholar 

  24. S.B. Amor, H. Meddeb, R. Daik, A.B. Othman, S.B. Slama, W. Dimassi, H. Ezzaouia, Appl. Surf. Sci. 360, 572–578 (2016)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Suntech Power Co., Ltd. This work was financed by the Shanghai Science and Technology Committee under Grant 19DZ1206503.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaojun Ye or Hongbo Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, H., Yang, N., Yuan, X. et al. Efficiency improvement of passivated emitter and rear cells using annealing process before surface passivation. J Mater Sci: Mater Electron 32, 944–955 (2021). https://doi.org/10.1007/s10854-020-04871-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04871-w

Navigation