Skip to main content
Log in

Generalized 2-Microlocal Frontier Prescription

  • Published:
Journal of Fourier Analysis and Applications Aims and scope Submit manuscript

Abstract

The characterization of local regularity is a fundamental issue in signal and image processing, since it contains relevant information about the underlying systems. The 2-microlocal frontier, a monotone concave downward curve in \(\mathbb {R}^2\), provides a useful way to classify pointwise singularity. In this paper we characterize all functions whose 2-microlocal frontier at a given point \(x_0\) is a given line. Further, for a general concave downward curve, we obtain a large family of functions (or distributions) for which the 2-microlocal frontier is the given curve. This family contains—as special cases—the constructions given in Meyer (CRM monograph series, 1998), Guiheneuf et al. (ACHA 5(4):487–492, 1998) and Lévy Véhel et al. (Proc Symp Pure Math 72:319–334, 2004). Moreover, following Lévy Véhel et al. (2004), we extend our results to the prescription on a countable dense set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Arneodo, A., Bacry, E., Jaffard, S., Muzy, J.F.: Singularity spectrum of multifractal functions involving oscillating singularities. J. Fourier Anal. Appl. 4(2), 159–174 (1998)

    Article  MathSciNet  Google Scholar 

  2. Abbott, B.P., et al.: Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. 116, 061102 (2016)

    Article  MathSciNet  Google Scholar 

  3. Abbott, B.P., et al.: Gw170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. 119, 161101 (2017)

    Article  Google Scholar 

  4. Abry, P., Roux, S.G., Jaffard, S.: Detecting oscillating singularities in multifractal analysis: application to hydrodynamic turbulence In: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 4328–4331 (2011)

  5. Balança, P.: Fine regularity of Lévy processes and linear (multi)fractional stable motion. Electron. J. Prob. 19 (2014)

  6. Balança, P., Herbin, E.: 2-Microlocal analysis of martingales and stochastic integrals. Stoch. Process. Appl. 122(6), 2346–2382 (2012)

    Article  MathSciNet  Google Scholar 

  7. Bony, J.M.: Second microlocalization and propagation of singularities for semi-linear hyperbolic equations. In: Mizohata, S. (ed.) Hyperbolic Equations and Related Topics, pp. 11–49. Academic Press (1986)

  8. Daoudi, K., Véhel, J.Lévy, Meyer, Y.: Construction of continuous functions with prescribed local regularity. Constr. Approx. 14(3), 349–385 (1998)

    Article  MathSciNet  Google Scholar 

  9. Echelard, A.: Analyse 2-microlocale et application au débruitage, Ph.D. thesis, University of Nantes, vol. (197 f.), p. 1 (2007)

  10. Flandrin, P.: Explorations in Time-Frequency Analysis, ch. Small Data are Beautiful, pp. 9–20. Cambridge University Press (2018)

  11. Guiheneuf, B., Jaffard, S., Véhel, J.Lévy: Two results concerning chirps and 2-microlocal exponents prescription. Appl. Comput. Harmon. Anal. 5(4), 487–492 (1998)

    Article  MathSciNet  Google Scholar 

  12. Herbin, E., Lévy Véhel, J.: Stochastic 2-microlocal analysis. Stoch. Process. Appl. 119(7), 2277–2311 (2009)

    Article  MathSciNet  Google Scholar 

  13. Jaffard, S.: Pointwise smoothness, two microlocalization and wavelet coefficients. Publ. Mat. 35(1), 155–168 (1991)

    Article  MathSciNet  Google Scholar 

  14. Jaffard, S.: Functions with prescribed Hölder exponent. Appl. Comput. Harmon. Anal. 2(4), 400–401 (1995)

    Article  MathSciNet  Google Scholar 

  15. Jaffard, S.: Old friends revisited: the multifractal nature of some classical functions. J. Fourier Anal. Appl. 3(1), 1–22 (1997)

    Article  MathSciNet  Google Scholar 

  16. Jaffard, S.: Construction of functions with prescribed Hölder and chirp exponents. Revista matemática iberoamericana 16(2), 331–350 (2000)

    Article  MathSciNet  Google Scholar 

  17. Jaffard, S., Meyer, Y.: Wavelet Methods for Pointwise Regularity and Local Oscillations of Functions, American Mathematical Society: Memoirs of the American Mathematical Society, vol. 587. American Mathematical Society (1996)

  18. Jaffard, S., Melot, C., Leonarduzzi, R., Wendt, H., Abry, P., Roux, S.G., Torres, M.E.: p-Exponent and p-leaders, part i: negative pointwise regularity. Physica A 448, 300–318 (2016)

    Article  MathSciNet  Google Scholar 

  19. Kopsinis, Y., Aboutanios, E., Waters, D.A., McLaughlin, S.: Time-frequency and advanced frequency estimation techniques for the investigation of bat echolocation calls. J. Acoust. Soc. Am. 127(2), 1124–1134 (2010)

    Article  Google Scholar 

  20. Kolwankar, K.M., Véhel, J.Lévy: A time domain characterization of the fine local regularity of functions. J. Fourier Anal. Appl. 8(4), 319–334 (2002)

    Article  MathSciNet  Google Scholar 

  21. Lévy Véhel, J., Seuret, S.: 2-microlocal formalism. In: Fractal Geometry and Applications: A Jubilee of Benoit Mandelbrot, Proceedings of Symposia in Pure Mathematics, vol. 72, pp. 153–215. AMS (2004)

  22. Meyer, Y.: Wavelets. CRM Monograph Series. American Mathematical Society, Vibrations and Scalings (1998)

  23. Rosenblatt, M.: Un análisis de la regularidad de funciones usando wavelets, Ph.D. thesis, Universidad de Buenos Aires (2019). http://cms.dm.uba.ar/academico/carreras/doctorado/Tesis_MRosenblatt_08_2019.pdf

  24. Seuret, S., Véhel, J.Lévy: The local Hölder function of a continuous function. Appl. Comput. Harmon. Anal. 13(3), 263–276 (2002)

    Article  MathSciNet  Google Scholar 

  25. Seuret, S., Véhel, J.Lévy: A time domain characterization of 2-microlocal spaces. J. Fourier Anal. Appl. 9(5), 473–495 (2003)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Universidad de Buenos Aires UBACyT 20020170100430BA, the CONICET PIP11220150100355, the MinCyT PICT 2014-1480 and from the Universidad Nacional de General Sarmiento PIO CONICET-UNGS 144-20140100011-CO. We thank the anonymous reviewers which helped improve the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ursula Molter.

Additional information

Communicated by Stephane Jaffard.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this Appendix we complete the technical details required to show that the functions obtained in [22] and [21] can be obtained by appropriately choosing the coefficients as indicated in Sect. 2.3.

1.1 Computation for the Choice of Coefficients of Meyer

Y. Meyer chooses a countable dense set \(\{s'_m\}\) in \(\mathbb {R}\) and defines

$$\begin{aligned} p_m= - \frac{dA}{dt}(s'_m)\quad \quad and \quad \quad \tau _m=A(s'_m)-\frac{dA}{dt}(s'_m)s'_m. \end{aligned}$$
(48)

He proves that the function f whose wavelet coefficients are given by

$$\begin{aligned} c_{j,k}= 2^{-j\tau _m} \quad \text {if} \quad j\in {\Lambda }_m ~\text {and} ~k_j=\left[ 2^{jp_m}\right] , \end{aligned}$$
(49)

with \({\Lambda }_m\) as in (9), and 0 otherwise, has \(s= A(s')\) as its 2-microlocal frontier at \(x_0=0\).

Using Theorem 2.1, we obtain the function f proposed by Y. Meyer, by selecting on one hand \(\mathscr {C}_{j,k}=1\) and on the other, \(\lambda _{j,k}\) such that

$$\begin{aligned} \lambda _{j,k}= \left\{ \begin{array}{lll} \frac{1+\left| k\right| }{2^{jp_m}}&{}\quad \text { if }&{}\quad j\in {\Lambda }_m \text { and } k=\left[ 2^{jp_m}\right] \\ \\ 1&{}\quad \text { otherwise. }&{} \end{array} \right. \end{aligned}$$

To see that for \(j\in {\Lambda }_m\) and \(k=\left[ 2^{jp_m}\right] \),

$$\begin{aligned} \mathscr {C}_{j,k} \inf _{\sigma \in \mathbb {R}} \left\{ ~2^{-jS(\sigma )}\left( \frac{1+\left| k\right| }{\lambda _{j,k}}\right) ^{S (\sigma )-\sigma }\right\} \end{aligned}$$

are the coefficients given in (49), we replace \(\lambda _{j,k}= \frac{1+\left| k\right| }{2^{jp_m}}\) and \(\mathscr {C}_{j,k}=1\). We have

$$\begin{aligned} \mathscr {C}_{j,k} \inf _{\sigma \in \mathbb {R}}\left\{ ~2^{-jS(\sigma )}\left( \frac{1+\left| k\right| }{\lambda _{j,k}}\right) ^{S (\sigma )-\sigma }\right\} = \inf _{\sigma \in \mathbb {R}} \left\{ ~2^{-jS(\sigma )-p_m(S (\sigma )-\sigma )}\right\} . \end{aligned}$$

To compute the infimum, recall that \(A(s') \) is downward concave and differentiable. Hence the tangent line at \(s'_m\) is on top of the graph of \(A(s')\), e.g., for all \(s'\),

$$\begin{aligned} s=A(s')\le A(s'_m)+\frac{dA}{dt}(s'_m)(s'-s'_m). \end{aligned}$$

Hence, using (48) we have that for all \(s'\) \(s+p_ms'\le \tau _m .\) Consequently, since \(S(\sigma )=s\) if and only if \(s=A(\sigma -s)\) we have

$$\begin{aligned} 2^{-j\tau _m}\le 2^{-j(s+p_m(\sigma -s))}= 2^{-j(S(\sigma )-p_m(S(\sigma )-\sigma ))}\quad \forall \sigma \in \mathbb {R}. \end{aligned}$$
(50)

Further, the equality \(2^{-j\tau _m}= 2^{-j(S(\sigma )-p_m(S(\sigma )-\sigma ))}\) is true if \(\sigma =\sigma _m=s_m+s'_m\) with \(s_m=A(s'_m)\).

Therefore,

$$\begin{aligned} \inf _{\sigma \in \mathbb {R}} \left\{ ~2^{-jS(\sigma )-p_m(S (\sigma )-\sigma )}\right\} =2^{-j\tau _m}=c_{j,k}.\end{aligned}$$

For all indexes jk not yet considered, we define \(c_{j,k}=0\), and so they clearly satisfy (12) for \(\mathscr {C}_{j,k}=1\) and \(\lambda _{j,k}=1\).

With these choices, the sequences \(\mathscr {C}_{j,k}\) and \(\lambda _{j,k}\) satisfy (i) y (ii) of Theorem  2.1 since,

$$\begin{aligned} \mathscr {C}_{j,k}=1\; \quad \text {and} \quad 1\le \lambda _{j,k}\le 2 \end{aligned}$$

for jk such that \(j\ge 0\) and \( | k|<2^j\).

1.2 Computation for the Choice of Coefficients of Lévy Véhel and Seuret

To proof that the function given in [21] is in fact a special case of our formula is rather delicate.

We will exhibit here only the computation for the case that g is a line and strictly increasing. The non-linear case can be found in section 4.3.3 of [23].

In [21], the function whose 2-microlocal frontier at \(x_0=0\) is \(g(s')=Ms' +d\), with \( 0<M \le 1\) and \(d>0\), is given by its wavelet coefficients \(c_{j,k}\). These are defined as 0 if \(k<0\) or \(j=0\) and for \(j>0\) and \(k \ge 0\) as

$$\begin{aligned} c_{j,k} = \left\{ \begin{array}{lll} 2^{-j^2} &{}\quad \text { if }&{}\quad k=[2^{j(1-M)}] \,\text { and } j\le d\\ 2^{-jd} &{}\quad \text { if }&{}\quad k=[2^{j(1-M)}]\,\text { and } j> d \\ 2^{-j^2} &{}\quad \text { if }&{}\quad k\ne [2^{j(1-M)}]. \end{array} \right. \end{aligned}$$
(51)

The Legendre transform of g is

$$\begin{aligned}g^*(\rho )=\inf _{s'}\{\rho s'-Ms'-d\}=\left\{ \begin{array}{ccc} -d &{}\quad \text { if }&{}\quad \rho =M\\ -\infty &{}\quad \text { if }&{}\quad \rho \ne M. \end{array} \right. \end{aligned}$$

In the \((\sigma ,s)\)-plane, the curve \(s=g(s')\) is

$$\begin{aligned} S(\sigma )=d+ \frac{1-M}{M}(d-\sigma ). \end{aligned}$$

We choose the sequences \(\mathscr {C}_{j,k} \) and \(\lambda _{j,k}\) in (31) and (32) as:

$$\begin{aligned} \lambda _{j,k}=\frac{1+|k|}{2^{j(1-M)}} \;\text { and }\; \mathscr {C}_{j,k}=\left\{ \begin{array}{lll} 1 &{}\quad \text { if }&{}\quad k=[2^{j(1-M)}]\,\text { and } j> d \\ 2^{-j^2+jd} &{}\quad \text { if }&{}\quad k=[2^{j(1-M)}] \,\text { and } j\le d \\ 2^{-j^2+jd} &{}\quad \text { if }&{}\quad k\ne [2^{j(1-M)}]. \end{array} \right. \end{aligned}$$
(52)

Replacing \( \lambda _{j,k}\) and \(S(\sigma )\) in the equation

$$\begin{aligned} |c_{j,k}|=\mathscr {C}_{j,k}\;. \displaystyle {\inf _{\sigma \in \mathbb {R}} \left\{ ~2^{-jS(\sigma )}\left( \frac{1+\left| k\right| }{\lambda _{j,k}}\right) ^{S (\sigma )-\sigma }\right\} }\end{aligned}$$

we obtain \(|c_{j,k}|=\mathscr {C}_{j,k}\;2^{-jd}. \) Therefore, if in (12) we consider equality and insert \(\mathscr {C}_{j,k}\) given above by (52), we obtain exactly the wavelet coefficients (12) for \(j>0\) and \(k\ge 0\). For \(k<0\) or \(j=0\) we define \(|c_{j,k}|=0\), which also satisfies (12).

It only remains to check that the sequences \( \mathscr {C}_{j,k}\) and \( \lambda _{j,k}\) satisfy (i) and (ii) of Theorem  2.1. In this case, the index set I is

$$\begin{aligned} I = \{(j,k): j\in \Lambda _m \text { and } |k_j|=[2^{jr_m}]\}, \end{aligned}$$

for \(r_m= 1-M\) for all m, where \(1-M\) is the only element in the range of \(\frac{S'(\sigma )}{S'(\sigma )-1}\).

If \((j,k_j)\in I\) we have that \(k_j =[2^{j(1-M)}]\) and hence \(\mathscr {C}_{j,k_j}=1\) or \(\mathscr {C}_{j,k_j}= 2^{-j^2+jd}\) and \(1\le \lambda _{j,k_j}\le 2\), and hence the conditions are satisfied.

If \(k\ne [2^{j(1-M)}]\) we have \(\mathscr {C}_{j,k}=2^{-j^2+jd}\). Further \( \lambda _{j,k}\) is bounded by

$$\begin{aligned} \frac{1}{2^{j(1-M)}}\le \frac{1+| k|}{2^{j(1-M)}}\le \frac{2^j}{2^{j(1-M)}}=2^{jM},\end{aligned}$$

and so \(\frac{\log _2(\lambda _{j,k})}{j}\) is bounded.

This proves that for \((j,k_j)\in I\) or \((j,k_j)\notin I\), (i) is satisfied, i.e. for any sequence \((k_j)_j\) such that \( |k_j|<2^j\),

$$\begin{aligned} \displaystyle {\lim _{\begin{array}{c} j\rightarrow +\infty \end{array}}{\left( \frac{\log _2\left( \mathscr {C}_{j,k_j}\right) }{j} +C \; \frac{\log _2\left( \lambda _{j,k_j}\right) }{j}\right) }\;\le 0}.\end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Molter, U., Rosenblatt, M. Generalized 2-Microlocal Frontier Prescription. J Fourier Anal Appl 26, 88 (2020). https://doi.org/10.1007/s00041-020-09791-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00041-020-09791-1

Keywords

Mathematics Subject Classification

Navigation