Skip to main content

Advertisement

Log in

Electrospun Ni-Ni(OH)2/Carbon Nanofibers as Flexible Binder-Free Supercapacitor Electrode with Enhanced Specific Capacitance

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

A flexible Ni-Ni(OH)2/carbon nanofiber (CNF) composite material was fabricated via electrospinning followed by a high-temperature carbonization and hydrothermal process. The Ni-Ni(OH)2/CNFs calcined at 800°C exhibited excellent electrochemical performance, with high specific capacitance of 763 F g−1 (1 A g−1). Moreover, the material showed good stability, with 94% capacitance retention after 8000 cycles. This work proves that Ni-Ni(OH)2/CNFs are a promising candidate for use as a high-efficiency supercapacitor electrode material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Yu, X. Xiong, L.Y. Zhou, J.L. Li, J.Y. Liang, S.Q. Hu, W.T. Lu, B. Li, and H.C. Zhou, J. Mater. Chem. A 7, 2875 (2019).

    CAS  Google Scholar 

  2. N.S. Neeraj, B. Mordina, A.K. Srivastava, K. Mukhopadhyay, and N.E. Prasad, Appl. Surf. Sci. 473, 807 (2019).

    CAS  Google Scholar 

  3. G. Huang, C. Li, J. Bai, X. Sun, and H. Liang, Int. J. Hydrogen Energy 41, 22144 (2016).

    CAS  Google Scholar 

  4. C.J. Hung, P. Lin, and T.Y. Tseng, J. Power Sources 243, 594 (2013).

    CAS  Google Scholar 

  5. H. Chen, S. Zhou, and L. Wu, Appl. Mater. Interfaces 6, 8621 (2014).

    CAS  Google Scholar 

  6. H. Jiang, L. Yang, C. Li, C. Yan, P.S. Lee, and J. Ma, Energy Environ. Sci. 4, 1813 (2011).

    CAS  Google Scholar 

  7. J.R. Miller and P. Simon, Science 321, 651 (2008).

    CAS  Google Scholar 

  8. G.H. An and H.J. Ahn, Appl. Surf. Sci. 473, 77 (2019).

    CAS  Google Scholar 

  9. G. Wang, L. Zhang, and J. Zhang, Chem. Soc. Rev. 41, 797 (2012).

    CAS  Google Scholar 

  10. J.L. Gunjakar, A.I. Inamdar, B. Hou, S.N. Cha, S.M. Pawar, A.A.A. Talha, H.S. Chavan, J. Kim, S. Cho, S. Lee, Y. Jo, H. Kim, and H. Im, Nanoscale 10, 8953 (2018).

    CAS  Google Scholar 

  11. D. Yu, Q. Qian, L. Wei, W. Jiang, K. Goh, J. Wei, and J. Zhang, Chem. Soc. Rev. 44, 647 (2015).

    CAS  Google Scholar 

  12. V. Augustyn, P. Simon, and B. Dunn, Environ. Sci. 7, 1597 (2014).

    CAS  Google Scholar 

  13. Z. Yu, L. Tetard, L. Zhai, and J. Thomas, Energy Environ. Sci. 8, 702 (2015).

    CAS  Google Scholar 

  14. X. Lu, M. Yu, G. Wang, Y. Tong, and Y. Li, Energy Environ. Sci. 7, 2160 (2014).

    Google Scholar 

  15. W. Raza, F. Ali, N. Raza, Y. Luo, K.H. Kim, J. Yang, S. Kumare, A. Mehmood, and E.E. Kwon, Nano. Energy 52, 441 (2018).

    CAS  Google Scholar 

  16. A. González, E. Goikolea, J.A. Barrena, and R. Mysyk, Renew. Sustain. Energy 58, 1189 (2016).

    Google Scholar 

  17. B.K. Kim, V. Chabot, and A. Yu, Electrochim. Acta 109, 370 (2013).

    CAS  Google Scholar 

  18. M. Jayalakshmi and K. Balasubramanian, Int. J. Electrochem. Soc. 3, 1196 (2008).

    CAS  Google Scholar 

  19. Y. Yang, F. Yang, H. Hu, S. Lee, Y. Wang, H. Zhao, D. Zeng, B. Zhou, and S. Hao, Chem. Eng. J. 307, 583 (2017).

    CAS  Google Scholar 

  20. X.H. Xia, Y.Q. Zhang, D.L. Chao, C. Guan, Y.J. Zhang, L. Li, X. Ge, I.M. Bacho, J.P. Tu, and H.J. Fan, Nanoscale 6, 5008 (2014).

    CAS  Google Scholar 

  21. X.H. Xia, D.L. Chao, Y.Q. Zhang, Z.X. Shen, and H.J. Fan, Nano Today 9, 785 (2014).

    CAS  Google Scholar 

  22. J.M. Sun, E. Lei, C.H. Ma, Z.W. Wu, Z. Xu, Y.S. Liu, W. Li, and S.X. Liu, Electrochim. Acta 300, 225 (2019).

    CAS  Google Scholar 

  23. V.D. Patake and C.D. Lokhande, Appl. Surf. Sci. 254, 2820 (2008).

    CAS  Google Scholar 

  24. X. Li, F. Zheng, D.F. Zhou, Y.M. Luo, Y.F. Li, and F.H. Lu, Electrochim. Acta 289, 292 (2018).

    CAS  Google Scholar 

  25. J. Sun, P. Man, Q. Zhang, B. He, Z. Zhou, C. Li, X. Wang, J. Guo, J. Zhao, L. Xie, Q. Li, J. Sun, G. Hong, and Y. Yao, Appl. Surf. Sci. 447, 795 (2018).

    CAS  Google Scholar 

  26. S.C. Du, Z.Y. Ren, Y. Qu, J. Wu, W. Xi, J.Q. Zhu, and H.G. Fu, Chem. Commun. 52, 6705 (2016).

    CAS  Google Scholar 

  27. G.J. Wei, Z. Zhou, X.X. Zhao, W.Q. Zhang, and C.H. An, ACS Appl. Mater. Interfaces. 10, 23721 (2018).

    CAS  Google Scholar 

  28. X.H. Xia, J.P. Tu, X.L. Wang, C.D. Gu, and X.B. Zhao, Chem. Commun. 40, 5786 (2011).

    Google Scholar 

  29. M.L. Li, G.Y. Sun, P.P. Yin, C.P. Ruan, and K.L. Ai, ACS Appl. Mater. Interfaces. 5, 11462 (2013).

    CAS  Google Scholar 

  30. C. Jiang, B. Zhao, J. Cheng, J. Li, H. Zhang, Z. Tang, and J. Yang, Electrochim. Acta 173, 399 (2015).

    CAS  Google Scholar 

  31. L.X. Zheng, L.T. Guan, J.L. Song, and H.J. Zheng, Appl. Surf. Sci. 480, 727 (2019).

    CAS  Google Scholar 

  32. W.X. He, H.R. Qiu, J. Meng, B. Liu, J.L. Cui, and Y.Q. Zhang, J. Alloys Compd. 788, 183 (2019).

    CAS  Google Scholar 

  33. L. Zhang, Q. Ding, Y. Huang, H. Gu, Y.E. Miao, and T. Liu, ACS Appl. Mater. Interfaces. 7, 22669 (2015).

    CAS  Google Scholar 

  34. Z.H. Jin, M. Zhou, J.G. Hu, K. Li, L.P. Tang, H. Zhao, Z.S. Cai, and Y.P. Zhao, J. Alloys Compd. 784, 1091 (2019).

    CAS  Google Scholar 

  35. S.R. Ede, S. Anantharaj, K.T. Kumaran, S. Mishrab, and S. Kundu, RSC Adv. 7, 5898 (2017).

    CAS  Google Scholar 

  36. Y. Zou, Y. Wang, Z. Fang, D. Wu, S. Yang, Z. Hao, J. Lang, and Q. Dong, J. Nanosci. Nanotechnol. 18, 7732 (2017).

    Google Scholar 

  37. M. Urso, G. Torrisi, S. Boninelli, C. Bongiorno, F. Priolo, and S. Mirabella, Sci. Rep. UK 9, 7736 (2019).

    Google Scholar 

  38. C. Portet, P.L. Taberna, P. Simon, E. Flahaut, and C.L. Robert, Electrochim. Acta 50, 4174 (2005).

    CAS  Google Scholar 

  39. B. Zhao, T. Wang, L. Jiang, K. Zhang, M.M.F. Yuen, J.B. Xu, X.Z. Fua, R. Sun, and C.P. Wong, Electrochim. Acta 192, 205 (2016).

    CAS  Google Scholar 

  40. Y.H. Zhao, X.Y. He, R.R. Chen, Q. Liu, J.Y. Liu, J. Yu, J.Q. Li, H.S. Zhang, H.X. Dong, M.L. Zhang, and J. Wang, Chem. Eng. J. 352, 29 (2018).

    CAS  Google Scholar 

  41. X.Y. He, R.M. Li, J.Y. Liu, Q. Liu, R.R. Chen, D.L. Song, and J. Wang, Chem. Eng. J. 334, 1573 (2018).

    CAS  Google Scholar 

  42. Y.H. Zhao, X.Y. He, R.R. Chen, Q. Liu, J.Y. Liu, D.L. Song, H.S. Zhang, H.X. Dong, R.M. Li, M.L. Zhang, and J. Wang, Appl. Surf. Sci. 453, 73 (2018).

    CAS  Google Scholar 

  43. T. Momma, X. Liu, T. Osaka, Y. Ushio, and Y. Sawada, J. Power Sources 30, 249 (1996).

    Google Scholar 

  44. P. He, Z.P. Ding, X. Zhao, J.H. Liu, Q. Huang, and J.J. Peng, Carbon 155, 453 (2019).

    CAS  Google Scholar 

  45. P. He, B.Y. Huang, Q. Huang, T.F. Chen, and Q.Q. Zhang, J. Mater. Sci. 53, 12352 (2018).

    CAS  Google Scholar 

  46. D.E. McCoy, T. Feo, T.A. Harvey, and R.O. Prum, Nat. Commun. 9, 790 (2018).

    Google Scholar 

  47. E. Samuel, B. Joshi, H.S. Jo, Y.I. Kim, S. An, M.T. Swihart, J.M. Yun, K.H. Kim, and S.S. Yoon, Chem. Eng. J. 15, 776 (2017).

    Google Scholar 

  48. X.H. Meng and D. Deng, Chem. Eng. Sci. 194, 134 (2019).

    CAS  Google Scholar 

  49. W. Gong, Z. Jiang, R. Wu, Y. Liu, L. Huang, N. Hu, P. Tsiakaras, and P.K. Shen, Appl. Catal. B Environ. 246, 277 (2019).

    CAS  Google Scholar 

  50. C.J. Huang, X.C. Yan, W.Y. Li, W.B. Wang, C. Verdy, M.P. Planche, H.L. Liao, and G. Montavon, Appl. Surf. Sci. 451, 56 (2018).

    CAS  Google Scholar 

  51. H. Mu, J. Bai, C. Li, and W. Sun, J. Alloys Compd. 775, 872 (2019).

    CAS  Google Scholar 

  52. X. Wang, X. Zhou, C. Shao, X. Li, and Y. Liu, Appl. Surf. Sci. 455, 952 (2018).

    CAS  Google Scholar 

  53. H. Chen, S.X. Zhou, and L.M. Wu, ACS Appl. Mater. Interfaces. 6, 8621 (2014).

    CAS  Google Scholar 

  54. Z. Li, W. Zhang, C. Sun, Z. Feng, and B. Yang, Electrochim. Acta 212, 390 (2016).

    CAS  Google Scholar 

  55. Y.P. Huang, F. Cui, Y. Zhao, J.B. Lian, J. Bao, and H.M. Li, J. Alloys Compd. 753, 176 (2018).

    CAS  Google Scholar 

  56. J.L. Xu, L. Zhan, G.C. Xu, Z.P. Sun, C. Zhang, X. Ma, C.L. Qi, L. Zhang, and D.Z. Jia, Appl. Surf. Sci. 434, 112 (2018).

    CAS  Google Scholar 

  57. M.X. Dong, Z.X. Wang, X.H. Li, H.J. Guo, J.X. Wang, and G.C. Yan, Chem. Eng. Sci. 221, 115709 (2020).

    CAS  Google Scholar 

  58. Q. Li, J. Guo, D. Xu, J. Guo, X. Ou, Y. Hu, H. Qi, and F. Yan, Small 14, 1704203 (2018).

    Google Scholar 

  59. X. Wang, L. Chen, F. Li, S. Zhang, X. Chen, and J. Yin, Ionics 25, 697 (2019).

    Google Scholar 

Download references

Acknowledgments

This work is financially support by the Scientific Research Program of Higher Education Institutions of Inner Mongolia Autonomous Region (NJZY18054).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eerdemutu Erdemutu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Erdemutu, E., Bai, C. & Ding, L. Electrospun Ni-Ni(OH)2/Carbon Nanofibers as Flexible Binder-Free Supercapacitor Electrode with Enhanced Specific Capacitance. J. Electron. Mater. 49, 7211–7218 (2020). https://doi.org/10.1007/s11664-020-08458-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08458-3

Keywords

Navigation