Skip to main content
Log in

Insight Into the Anomalous Electrical Behavior, Dielectric and Magnetic Study of Ag-Doped CoFe2O4 Synthesised by Okra Extract-Assisted Green Synthesis

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

The effect of substitution of silver (Ag) on the structural, electric, dielectric and magnetic properties of nano-CoFe2O4 synthesized via green synthesis using okra plant extract is investigated. The lattice parameters and inverse spinel structure of Ag-substituted CoFe2O4 is confirmed from Rietveld refinement of the x-ray diffraction measurements, Fourier transform infrared (FT-IR) and Raman spectra. A lattice expansion is observed due to the incorporation of larger Ag ions into the CoFe2O4 lattice. Field emission scanning electron micrography analyses elucidate the formation of poly-faceted surfaces with reduction in particle size on Ag doping. The temperature dependent impedance and modulus study reveals the presence of relaxation phenomenon which is dependent on frequency and temperature. Frequency dependent dielectric measurements with increasing temperature obey the modified Debye model. Dielectric loss in the negative region for Ag-doped CoFe2O4 signifies the change of polarization direction due to an increase of Co2+/Fe2+ ratio for the substitution of Ag ions in the B site. Magnetic hysteresis curves exhibit a low field hysteresis loop at room temperature indicating the long-range ferromagnetic ordering nature of the samples. Low loss and high dielectric values make these materials a promising candidate for high frequency devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. V. Uskokovic, M. Drofenik, and I. Ban, J. Magn. Magn. Mater. 284, 294 (2004).

    CAS  Google Scholar 

  2. S. Hatamie, B. Parseh, M.M. Ahadian, F. Naghdabadi, R. Saber, and M. Soleimani, J. Magn. Magn. Mater. 462, 185 (2018).

    CAS  Google Scholar 

  3. H. Shokrollahi, A. Khorramdin, and Gh. Isapour, J. Magn. Magn. Mater. 369, 176 (2014).

    CAS  Google Scholar 

  4. P. Liu, S. Chen, M. Yao, Z. Yao, V.M.H. Ng, J. Zhou, Y. Lei, Z. Yang, and L.B. Kong, Mater. Sci. Semicond. Process. 112, 105008 (2020).

    CAS  Google Scholar 

  5. P. Liu, Z. Yao, J. Zhou, Z. Yang, and L.B. Kong, J. Mater. Chem. 4, 9738 (2016).

    CAS  Google Scholar 

  6. R. Gao, Q. Zhang, Z. Xu, Z. Wang, G. Chen, X. Deng, C. Fu, and W. Cai, W. Compos. Part B: Eng 166, 204 (2019).

    CAS  Google Scholar 

  7. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, and W. Cai, Alloys Compd. 795, 501 (2019).

    CAS  Google Scholar 

  8. L. Sintubin, W. Verstraete, and N. Boon, Biotechnol. Bioeng. 109, 2422 (2012).

    CAS  Google Scholar 

  9. S.S. Suri, H. Fenniri, and B. Singh, J. Occup. Med. Toxicol. 2, 16 (2007).

    Google Scholar 

  10. S.V. Patil, H.P. Borase, C.D. Patil, and B.K. Salunke, Appl. Biochem. Biotech. 107, 776 (2012).

    Google Scholar 

  11. K.K. Jain, BMC Med. 8, 83 (2010).

    CAS  Google Scholar 

  12. Y.V. Anisimova, S.I. Gelperina, C.A. Peloquin, and L.B. Heifets, J. Nanopart. Res. 2, 165 (2000).

    CAS  Google Scholar 

  13. S. Mohanty, P. Jena, R. Mehta, R. Pati, B. Banerjee, S. Patil, and A. Sonawane, Antimicrob. Agents Chemother. 57, 3688 (2013).

    CAS  Google Scholar 

  14. H.P. Borase, C.D. Patil, I.P. Sauter, M.B. Rott, and S.V. Patil, FEMS Microbiol. Lett. 345, 127 (2013).

    CAS  Google Scholar 

  15. E. Suja, Y.V. Nancharaiah, and V.P. Venugopalan, Appl. Biochem. Biotech. 167, 1569 (2012).

    CAS  Google Scholar 

  16. H.P. Borase, C.D. Patil, R.B. Salunkhe, R.K. Suryawanshi, B.K. Salunke, and S.V. Patil, Biotechnol. Appl. Bioc. 61, 385 (2013).

    Google Scholar 

  17. C.J. Kirubaharan, D. Kalpana, Y.S. Lee, A.R. Kim, D.J. Yoo, K.S. Nahm, and G.G. Kumar, Ind. Eng. Chem. 51, 7441 (2012).

    CAS  Google Scholar 

  18. E. Pervaiz and I.H. Gul, Journal. J. Magn. Magn. Mater. 343, 194 (2013).

    CAS  Google Scholar 

  19. T. Prabhakaran and J. Hemalatha, Ceram. Int. 4, 14113 (2016).

    Google Scholar 

  20. L. Avazpour, M.R. Toroghinejad, and H. Shokrollahi, Appl. Surf. Sci. 387, 869 (2016).

    CAS  Google Scholar 

  21. V.S. Kiran and S. Sumathi, J. Magn. Magn. Mater. 421, 113 (2017).

    CAS  Google Scholar 

  22. T. Sodaee, A. Ghasemi, and R.S. Razavi, Ceram. Int. 42, 17420 (2016).

    CAS  Google Scholar 

  23. D. Gingasu, I. Mindru, O.C. Mocioiu, S. Preda, N. Stanica, L. Patron, A. Ianculescu, O. Oprea, S. Nita, I. Paraschiv, M. Popa, C. Saviuc, C. Bleotu, and M.C. Chifiriuc, Mater. Chem. Phys. 182, 219 (2016).

    CAS  Google Scholar 

  24. K. Kombaiah, J.J. Vijaya, L.J. Kennedy, and M. Bououdina. Optik 129, 57 (2017).

    CAS  Google Scholar 

  25. N. Sanpo, C.C. Berndt, C. Wen, and J. Wang, Acta Biomater. 9, 5830 (2013).

    CAS  Google Scholar 

  26. S. Velho-Pereira, A. Noronha, and A. Mathias, Mater. Sci. Eng. C 52, 282 (2015).

    CAS  Google Scholar 

  27. S. Xavier, H. Cleetus, P.J. Nimila, S. Thankachan, R.M. Sebastian, and E.M. Mohammed, Pharm. Biol. Chem. Sci. 5(5), 364 (2014).

  28. R. Shukla, R.S. Ningthoujam, and S.S. Umare, Hyperfine Interact. 184, 217 (2008).

    CAS  Google Scholar 

  29. E.J. Choi, Y. Ahn, S. Kim, D.H. An, K.U. Kang, B.-G. Lee, K.S. Baek, and H.N. Oak, J. Magn. Magn. Mater. 262, L198 (2003).

    CAS  Google Scholar 

  30. K.L. Routray, D. Sanyal, and D. Behera, J. Appl. Phy. 122, 224104 (2017).

    Google Scholar 

  31. M. Mozaffari, S. Manouchehri, M.H. Yousefi, and J. Amighian, J. Magn. Magn. Mater. 322, 383 (2010).

    CAS  Google Scholar 

  32. L.V. Gasparov, D.B. Tanner, D.B. Romero, H. Berger, G. Margaritondo, and L. Forro, Phys. Rev. B 69, 7939 (2000).

    Google Scholar 

  33. J. Ayyappan, B. Philip, and J. Raj, J. Phys. Chem. 113, 590 (2009).

    CAS  Google Scholar 

  34. A.K. Baral and V. Sankaranarayanan, Appl. Phys. A 98, 367 (2010).

    CAS  Google Scholar 

  35. V. Saltas, I. Fitilis, and F. Vallianatos, Tectonophysics 637, 198 (2014).

    Google Scholar 

  36. M. Satalkar, S.N. Kane, M. Kumaresavanji, and J.P. Araujo, Mater. Res. 91, 14 (2017).

    CAS  Google Scholar 

  37. D.N.H. Tran, S. Kabiri, and D. Losic, Carbon 76, 193 (2014).

    CAS  Google Scholar 

  38. D. Suresh, Udayabhanu, M.A. Pavan Kumar, H. Nagabhushana, and S.C. Sharma, Mater. Lett. 151, 93 (2015).

  39. J. Suchanicz, Mat. Sci. Eng. B 55, 114 (1998).

    Google Scholar 

  40. E. Oumezzine, S. Hcini, F.I.H. Rhouma, and M. Oumezzine, J. Alloys Compd. 726, 187 (2017).

    CAS  Google Scholar 

  41. D.L. Sekulić, Z.Z. Lazarević, Č.D. Jovalekić, A.N. Milutinović, and N.Z. Romčević, Sci. Sinter. 48(1), 2016.

  42. M.E. Hajlaoui, R. Dhahri, N. Hnainia, A. Benchaabane, E. Dhahri, and K. Khirouni, RSC Adv. 9, 32395 (2019).

    CAS  Google Scholar 

  43. L.S. Lobo, S. Kalainathan, and A.R. Kumar, Superlattice Microst. 88, 116 (2015).

    CAS  Google Scholar 

  44. M. Atif, and M. Nadeem, J. Alloys Compd. 623, 447 (2015).

    CAS  Google Scholar 

  45. M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, and M.M. Hassan, Acta Mater. 59, 1338 (2011).

    CAS  Google Scholar 

  46. K.W. Wagner, Am. J. Phys. 40, 317 (1973).

    Google Scholar 

  47. R. Gao, X. Qin, Q. Zhang, Z. Xu, Z. Wang, C. Fu, G. Chen, X. Deng, and W. Cai, Mater. Chem. Phys. 232, 428 (2019).

    CAS  Google Scholar 

  48. C.G. Koops, Phys. Rev. 83, 121 (1951).

    CAS  Google Scholar 

  49. R.D. Shannon, J. Appl. Phy. 73, 348 (1993).

    CAS  Google Scholar 

  50. P. Liu, V.M.H. Ng, Z. Yao, J. Zhou, Y. Lei, Z. Yang, H. Lv, and L.B. Kong, ACS Appl. Mater. Interfaces 9, 16404 (2017).

    CAS  Google Scholar 

  51. H.M. Zaki, Physica B Condens. Matt. 363, 232 (2005).

    CAS  Google Scholar 

  52. C.V. Ramana, Y.D. Kolekar, K. Kamala Bharathi, B. Sinha, K. Ghosh, J. Appl. Phys. 114(18), p.183907 (2013).

  53. Y. Köseoğlu, Ceram. Int. 39, 4221 (2013).

    Google Scholar 

Download references

Acknowledgments

Author Krutika L. Routray acknowledges Department of Science and Technology, India, for fellowship grants under the INSPIRE scheme with Sanction Number DST/INSPIRE Fellowship/ 2014/IF140812 during her research work. Magnetisation study has been supported by VSM, DST, India, project code ‘‘EMR/2014/000341’’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krutika L. Routray.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Routray, K.L., Saha, S. & Behera, D. Insight Into the Anomalous Electrical Behavior, Dielectric and Magnetic Study of Ag-Doped CoFe2O4 Synthesised by Okra Extract-Assisted Green Synthesis. J. Electron. Mater. 49, 7244–7258 (2020). https://doi.org/10.1007/s11664-020-08468-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-020-08468-1

Keywords

Navigation