Skip to main content
Log in

Mechanical behavior and fracture toughness characterization of high strength fiber reinforced polymer textile composites

  • Review
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The mechanical and fracture behavior of polymer composites are the subject of great interest from many years and still interesting among the researchers. Composites are extremely used for their superior mechanical, thermal and fracture toughness properties in various sectors such as automobile, aerospace and defense applications. In this article, unidirectional and woven high strength glass, carbon and Kevlar fiber reinforced polymer textile composites are taken into consideration for the comprehensive review of mechanical behavior and fracture toughness characterization. Current review work began with the introduction to polymer textile composites with its manufacturing stages, processing techniques and factors affecting the performance under mechanical loading. The mechanical behavior of high strength fiber reinforced polymer (HSFRP) textile composites was discussed in tension, compression, flexural, low velocity and high velocity impact loading with the recent numerical and experimental characterization studies. Textile geometrical modeling and CAE tools are also described for numerical characterization. Under the influence of mechanical loading on composites, failure occurs actually due to the crack initiation and propagation, so it is also required to characterize. Significant elements of fracture mechanics are well described for the better understanding of fracture toughness characterization. Mode-I, Mode-II, Mode-III interlaminar and Mode-I intralaminar fracture toughness characterization are widely explained by considering the effect of filler content, fiber orientation and fiber volume fraction. Fracture toughness characterization techniques and research summery are uniquely presented by considering various factors under one umbrella for better understanding of fracture behavior. Statistical Weibull distribution is also presented for the failure prediction of composites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Jones RM (1999) Mechanics of composite materials. Taylor & Francis, London

    Google Scholar 

  2. Kaw AK (2006) Mechanics of composite materials, II. CRC, London

    Google Scholar 

  3. Chawla KK (2012) Composite materials: science and engineering, 3rd edn. Springer, Berlin

    Google Scholar 

  4. Davé RS, Loos AC (2000) Processing of composites. Hanser

  5. Debnath K, Singh I, Singh I (2017) Primary and secondary manufacturing of polymer matrix composites. CRC, London

    Google Scholar 

  6. Mallick PK (2017) Polymer matrix composites: processing and applications. CRC, London

    Google Scholar 

  7. Park SY, Choi CH, Choi WJ, Hwang SS (2019) A comparison of the properties of carbon fiber epoxy composites produced by non-autoclave with vacuum bag only prepreg and autoclave process. Appl Compos Mater 26:187–204

    CAS  Google Scholar 

  8. Alsayed Z, Awad R, Badawi MS (2020) Thermo-mechanical properties of high density polyethylene with zinc oxide as a filler. Iran Polym J 29:309–320

    CAS  Google Scholar 

  9. Asenjan MS, Sabet SAR, Nekoomanesh M (2020) Mechanical and high velocity impact performance of a hybrid long carbon/glass fiber/polypropylene thermoplastic composite. Iran Polym J 29:301–307

    Google Scholar 

  10. Priyanka P, Dixit A, Mali HS (2017) High-strength hybrid textile composites with carbon, Kevlar, and E-glass fibers for impact-resistant structures: a review. Mech Compos Mater 53:685–704

    CAS  Google Scholar 

  11. Dixit A, Mali HS (2013) Modeling techniques for predicting the mechanical properties of woven-fabric textile composites: a review. Mech Compos Mater 49:1–20

    Google Scholar 

  12. Sharma P, Priyanka P, Mali HS, Dixit A (2020) Geometric modeling and finite element analysis of kevlar monolithic and carbon-kevlar hybrid woven fabric unit cell. Mater Today Proc 26:766–774

    CAS  Google Scholar 

  13. Aliabadi MH (2015) Computational and experimental methods in structures. Vol. 6: Woven composites, I. Imperial College, London

  14. Ghasemi AR, Fesharaki MM (2018) Effect of carbon nanotube on cured shape of cross-ply polymer matrix nanocomposite laminates: analytical and experimental study. Iran Polym J 27:965–977

    CAS  Google Scholar 

  15. Karakuzu R, Aslan Z, Okutan B (2004) The effect of ply number, orientation angle and bonding type on residual stresses of woven steel fiber reinforced thermoplastic laminated composite plates subjected to transverse uniform load. Compos Sci Technol 64:1049–1056

    Google Scholar 

  16. Swolfs Y, Gorbatikh L, Verpoest I (2014) Fibre hybridisation in polymer composites: a review. Compos Part A: Appl Sci Manuf 67:181–200

    CAS  Google Scholar 

  17. Lin H, Brown LP, Long AC (2011) Modelling and simulating textile structures using TexGen. Adv Mater Res 331:44–47

    Google Scholar 

  18. Green SD, Matveev MY, Long AC, Ivanov D, Hallett SR (2014) Mechanical modelling of 3D woven composites considering realistic unit cell geometry. Compos Struct 118:284–293

    Google Scholar 

  19. Lin H, Long AC, Sherburn M, Clifford MJ (2008) Modelling of mechanical behaviour for woven fabrics under combined loading. Int J Mater Form 1:899–902

    Google Scholar 

  20. Verpoest I, Lomov SV (2005) Virtual textile composites software WiseTex: integration with micro-mechanical, permeability and structural analysis. Compos Sci Technol 65:2563–2574

    CAS  Google Scholar 

  21. Lomov SV, Verpoest I (2003) WiseTex-virtual textile reinforcement software. Proc 48th SAMPE-USA Symp 48:1320–1334

  22. Lomov S V (2011) Modelling the geometry of textile reinforcements for composites: WiseTex. In: Composite reinforcements for optimum performance. Elsevier, pp 200–238

  23. Denton MJ, Seth AK (1989) Computer simulation of the appearance of fabric woven from blended-fibre yarns. J Text Inst 80:415–440

    Google Scholar 

  24. Hewitt JA, Brown D, Clarke RB (1996) Modelling, evaluation and manufacture of woven composite materials. Compos Part A: Appl Sci Manuf 27:295–299

    Google Scholar 

  25. Irina C, Cristina P (2015) CAD applications for compound woven fabrics. In: Int Sci Conf “eLearning and Software for Education”, pp 542–549

  26. Zheng Z, Zhao X, Wang C, Sun X (2015) Investigation of automated geometry modeling process of woven fabrics based on the yarn structures. J Text Inst 106:925–933

    CAS  Google Scholar 

  27. Chen X, Hearle J (2010) Structural hierarchy in textile materials: an overview. In: Modelling and predicting textile behaviour. Woodhead Publishing Series in Textiles, pp 3–40

  28. Chen X (2010) Mathematical and mechanical modelling of 3D cellular textile composites for protection against trauma impact. In: Modelling and predicting textile behavior. Woodhead Publishing Series in Textiles, pp 457–493

  29. Priyanka P, Mali HS, Dixit A (2019) Geometrical modeling and performance analysis of textile composites using Python Scripted Software Platforms. In: Advances in simulation, product design and development, pp 395–405

  30. De Carvalho NV, Pinho ST, Robinson P (2012) Numerical modelling of woven composites: biaxial loading. Compos Part A: Appl Sci Manuf 43:1326–1337

    Google Scholar 

  31. Dixit A, Mali HS, Misra RK (2013) Unit cell model of woven fabric textile composite for multiscale analysis. Proc Eng 68:352–358

    Google Scholar 

  32. Misra RK, Dixit A, Mali HS (2014) Finite element (FE) shear modeling of woven fabric textile composite. Proc Mater Sci 6:1344–1350

    CAS  Google Scholar 

  33. Dixit A, Misra RK, Mali HS (2014a) Finite element compression modelling of 2x2 twill woven fabric textile composite. Proc Mater Sci 6:1143–1149

    CAS  Google Scholar 

  34. Nirbhay M, Dixit A, Misra RK, Mali HS (2014) Tensile test simulation of CFRP test specimen using finite elements. Proc Mater Sci 5:267–273

    CAS  Google Scholar 

  35. Dixit A, Mali HS, Misra RK (2014) A micromechanical unit cell Model of 2 × 2 twill woven fabric textile composite for multi scale analysis. J Inst Eng Ser E 95:1–9

    CAS  Google Scholar 

  36. Dixit A, Misra RK, Mali HS (2014b) Compression modeling of plain weave textile fabric using finite elements. Materwiss Werksttech 45:600–610

    Google Scholar 

  37. Wang L, Zhao B, Wu J, Chen C, Zhou K (2018) Experimental and numerical investigation on mechanical behaviors of woven fabric composites under off-axial loading. Int J Mech Sci 141:157–167

    Google Scholar 

  38. Dixit A, Misra RK, Mali HS (2015) Finite element analysis of quasi-static indentation of woven fabric textile composites using different nose shape indenters. Materwiss Werksttech 46:1014–1028

    Google Scholar 

  39. Priyanka P, Mali HS, Dixit A (2019) Mesoscale numerical characterization of Kevlar and carbon–Kevlar hybrid plain-woven fabric compression behavior. J Mater Eng Perform 28:5749–5762

    CAS  Google Scholar 

  40. Mallikarachchi HMYC (2019) Predicting mechanical properties of thin woven carbon fiber reinforced laminates. Thin-Walled Struct 135:297–305

    Google Scholar 

  41. Dong C, Ranaweera-Jayawardena HA, Davies IJ (2012) Flexural properties of hybrid composites reinforced by S-2 glass and T700S carbon fibres. Compos Part B Eng 43:573–581

    CAS  Google Scholar 

  42. Wang L, Wu J, Chen C, Zheng C, Li B, Joshi SC, Zhou K (2017) Progressive failure analysis of 2D woven composites at the meso-micro scale. Compos Struct 178:395–405

    Google Scholar 

  43. Hochard C, Aubourg PA, Charles JP (2001) Modelling of the mechanical behaviour of woven-fabric CFRP laminates up to failure. Compos Sci Technol 61:221–230

    CAS  Google Scholar 

  44. Dixit A, Mali HS, Misra RK (2015) Investigation of the thermomechanical behavior of a 2 × 2 twill weave fabric advanced textile composite. Mech Compos Mater 51:253–264

    CAS  Google Scholar 

  45. Priyanka P, Dixit A, Mali HS (2019) High strength Kevlar fiber reinforced advanced textile composites. Iran Polym J 28:621–638

    Google Scholar 

  46. Bulut M, Erkliǧ A, Yeter E (2016) Experimental investigation on influence of Kevlar fiber hybridization on tensile and damping response of Kevlar/glass/epoxy resin composite laminates. J Compos Mater 50:1875–1886

    CAS  Google Scholar 

  47. Hashim N, Majid DLA, Zahari R, Yidris N (2017) Tensile properties of woven carbon/kevlar reinforced epoxy hybrid composite. Mater Sci Forum 890:20–23

    Google Scholar 

  48. Bandaru AK, Patel S, Sachan Y, Ahmad S, Alagirusamy R, Bhatnagar N (2016) Mechanical behavior of Kevlar/basalt reinforced polypropylene composites. Compos Part A: Appl Sci Manuf 90:642–652

    CAS  Google Scholar 

  49. Pandya KS, Veerraju C, Naik NK (2011) Hybrid composites made of carbon and glass woven fabrics under quasi-static loading. Mater Des 32:4094–4099

    CAS  Google Scholar 

  50. Bandaru AK, Chavan VV, Ahmad S, Alagirusamy R, Bhatnagar N (2016) Low velocity impact response of 2D and 3D Kevlar/polypropylene composites. Int J Impact Eng 93:136–143

    Google Scholar 

  51. Woo SC, Kim TW (2016) High strain-rate failure in carbon/Kevlar hybrid woven composites via a novel SHPB-AE coupled test. Compos Part B Eng 97:317–328

    CAS  Google Scholar 

  52. Pandya KS, Pothnis JR, Ravikumar G, Naik NK (2013) Ballistic impact behavior of hybrid composites. Mater Des 44:128–135

    CAS  Google Scholar 

  53. Kharat WS, Sidhu JS (2016) Development of epoxy based composites filled with boron carbide (B4C), tungsten disulphide (WS2) and evaluation of its mechanical properties. Int J Mech Eng Res 6:19–30

    Google Scholar 

  54. Dike AS, Mindivan H (2013) Mechanical properties of polypropylene based composites reinforced with B4C. Adv Mater Res 685:19–23

    Google Scholar 

  55. Abenojar J, Martínez MA, Velasco F, Pascual-Sánchez V, Martín-Martínez JM (2009) Effect of boron carbide filler on the curing and mechanical properties of an epoxy resin. J Adhes 85:216–238

    CAS  Google Scholar 

  56. Dike AS, Mindivan F, Mindivan H (2014) Effect of B4C content on the mechanical and tribological performances of polypropylene. Acta Phys Pol A 125:396–398

    Google Scholar 

  57. Golla SK, Prasanthi P (2016) Micromechanical analysis of a hybrid composite-effect of boron carbide particles on the elastic properties of basalt fiber reinforced polymer composite. Mater Res Express 3:1–15

    Google Scholar 

  58. Kulkarni SD, Chethan S (2019) Comparative study of mechanical behavior of silicon carbide filled and boron carbide filled glass fiber reinforced vinyl ester composites. In: AIP Conference Proceedings. American Institute of Physics, pp 020065-1–020065-9

  59. Rajesh S, Vijayaramnath B, Elanchezhian C, Aravind N, Rahul VV, Sathish S (2014) Analysis of mechanical behavior of glass fibre/Al2O3-SiC reinforced polymer composites. Proc Eng 97:598–606

    CAS  Google Scholar 

  60. Muralidhara B, Kumaresh Babu SP, Suresha B (2019) The effect of boron carbide on the mechanical properties of bidirectional carbon fiber/epoxy composites. Mater Today Proc 27:2340–2345

    Google Scholar 

  61. Wu X, Liao Y, Meng G, Tang L, Zhou Z, Li Q, Huang W (2019) SiO2/carbon fiber-reinforced polypropylene–thermoplastic polyurethane composites: electrical conductivity and mechanical and thermal properties. Iran Polym J 28:527–537

    CAS  Google Scholar 

  62. Demircan G, Kisa M, Ozen M, Aktas B (2020) Surface-modified alumina nanoparticles-filled aramid fiber-reinforced epoxy nanocomposites: preparation and mechanical properties. Iran Polym J 29:253–264

    CAS  Google Scholar 

  63. Acikbas G, Yaman B (2019) Wear response of glass fiber and ceramic tile-reinforced hybrid epoxy matrix composites. Iran Polym J 28:21–29

    CAS  Google Scholar 

  64. Anderson TL (2005) Fracture mechanics: fundamentals and applications, 4th edn. CRC, London

    Google Scholar 

  65. Hwang JH, Lee CS, Hwang W (2001) Effect of crack propagation directions on the interlaminar fracture toughness of carbon/epoxy composite materials. Appl Compos Mater 8:411–433

    CAS  Google Scholar 

  66. Hertzberg RW, Vinci RP, Hertzberg JL (2012) Deformation and fracture mechanics of engineering materials, 5th edn. Wiley, Hoboken

    Google Scholar 

  67. Kundu T (2012) Fundamentals of fracture mechanics. CRC Press, Taylor and Francis Group, London

    Google Scholar 

  68. Hanim MA, Brabazon D, Hashmi M (2019) Cracks, microcracks, and fracture toughness of polymer composites: formation, testing method, nondestructive detection, and modifications. In: Failure analysis in biocomposites, fibre-reinforced composites and hybrid composites. Woodhead Publishing, 157–180

  69. Perez N (2017) Fracture mechanics, 2nd edn. Springer, Berlin

    Google Scholar 

  70. Kumar P (2009) Elements of fracture mechanics. McGraw Hill Education (India) Private Limited, Chennai

  71. Kim SC, Kim JS, Yoon HJ (2011) Experimental and numerical investigations of mode I delamination behaviors of woven fabric composites with carbon, Kevlar and their hybrid fibers. Int J Precis Eng Manuf 12:321–329

    Google Scholar 

  72. Heidari-Rarani M, Sayedain M (2019) Finite element modeling strategies for 2D and 3D delamination propagation in composite DCB specimens using VCCT, CZM and XFEM approaches. Theor Appl Fract Mech 103:1–10

    Google Scholar 

  73. Jokinen J, Kanerva M (2019) Simulation of delamination growth at CFRP-tungsten aerospace laminates using VCCT and CZM modelling techniques. Appl Compos Mater 26:709–721

    CAS  Google Scholar 

  74. Woo K (2017) Fracture analysis of woven textile composite using cohesive zone modeling. J Mech Sci Technol 31:1629–1637

    Google Scholar 

  75. Friedrich K (1989) Application of fracture mechanics to composite materials, 1st edn. Elsevier, North Holland

    Google Scholar 

  76. Dolati S, Fereidoon A, Sabet AR (2014) Experimental investigation into glass fiber/epoxy composite laminates subjected to single and repeated high-velocity impacts of ice. Iran Polym J 23:477–486

    Google Scholar 

  77. ASTM D5528-01 (2010) Mode I interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. Am Soc Test Mater 01:1–12

    Google Scholar 

  78. Riezzo MA, Simmons M, Russell B, Sket F, Martínez V, González C (2019) Dynamic characterisation of interlaminar fracture toughness in carbon fibre epoxy composite laminates. Compos Part A: Appl Sci Manuf 126:1–14

    Google Scholar 

  79. Ye L (1992) Evaluation of Mode-I interlaminar fracture toughness for fiber-reinforced composite materials. Compos Sci Technol 43:49–54

    CAS  Google Scholar 

  80. Prasad MSS, Venkatesha CS, Jayaraju T (2011) Experimental methods of determining fracture toughness of fiber reinforced polymer composites under various loading conditions. J Miner Mater Charact Eng 10:1263–1275

    Google Scholar 

  81. Chen L, Wu LW, Jiang Q, Tian D, Zhong Z, Wang Y, Fu HJ (2019) Improving interlaminar fracture toughness and impact performance of carbon fiber/epoxy laminated composite by using thermoplastic fibers. Molecules 24:1–13

    Google Scholar 

  82. Wong DWY, Lin L, McGrail PT, Peijs T, Hogg PJ (2010) Improved fracture toughness of carbon fibre/epoxy composite laminates using dissolvable thermoplastic fibres. Compos Part A Appl Sci Manuf 41:759–767

    Google Scholar 

  83. Trabelsi W, Michel L, Othomene R (2010) Effects of stitching on delamination of satin weave carbon-epoxy laminates under mode I, mode II and mixed-mode I/II loadings. Appl Compos Mater 17:575–595

    CAS  Google Scholar 

  84. Mouritz AP, Baini C, Herszberg I (1999) Mode I interlaminar fracture toughness properties of advanced textile fibreglass composites. Compos Part A: Appl Sci Manuf 30:859–870

    Google Scholar 

  85. Rao DS, Reddy PR, Venkatesh S (2017) Determination of Mode-I fracture toughness of epoxy-glass fibre composite laminate. Proc Eng 173:1678–1683

    Google Scholar 

  86. Blake SP, Berube KA, Lopez-Anido RA (2012) Interlaminar fracture toughness of woven E-glass fabric composites. J Compos Mater 46:1583–1592

    Google Scholar 

  87. Hosseini MR, Taheri-Behrooz F, Salamat-Talab M (2019) Mode I interlaminar fracture toughness of woven glass/epoxy composites with mat layers at delamination interface. Polym Test 78:1–10

    Google Scholar 

  88. Saidane EH, Scida D, Pac MJ, Ayad R (2019) Mode-I interlaminar fracture toughness of flax, glass and hybrid flax-glass fibre woven composites: failure mechanism evaluation using acoustic emission analysis. Polym Test 75:246–253

    CAS  Google Scholar 

  89. Davallo M (2010) Factors affecting fracture behaviour of composite materials. Int J Chem Tech Res 2:2125–2130

    CAS  Google Scholar 

  90. Bilisik K, Sapanci E (2018) Fracture toughness (Mode-I) of para-aramid/phenolic nano preform composites. Appl Compos Mater 25:877–890

    CAS  Google Scholar 

  91. Chitsaz Dehaghani R, Shokrieh MM, Taheri-Behrooz F (2018) An investigation on effects of acid etching duration on adhesive bonding of polyethylene to E-glass/epoxy composites. Int J Adhes Adhes 85:177–183

    CAS  Google Scholar 

  92. Siddiqui NA, Woo RSC, Kim JK, Leung CCK, Munir A (2007) Mode I interlaminar fracture behavior and mechanical properties of CFRPs with nanoclay-filled epoxy matrix. Compos Part A Appl Sci Manuf 38:449–460

    Google Scholar 

  93. Kostopoulos V, Karapappas P, Loutas T, Vavouliotis A, Paipetis A, Tsotra P (2011) Interlaminar fracture toughness of carbon fibre-reinforced polymer laminates with nano- and micro-fillers. Strain 47:269–282

    Google Scholar 

  94. Srivastava VK, Gries T, Veit D, Quadflieg T, Mohr B, Kolloch M (2017) Effect of nanomaterial on mode I and mode II interlaminar fracture toughness of woven carbon fabric reinforced polymer composites. Eng Fract Mech 180:73–86

    Google Scholar 

  95. Ahmadi-Moghadam B, Taheri F (2015) Influence of graphene nanoplatelets on modes I, II and III interlaminar fracture toughness of fiber-reinforced polymer composites. Eng Fract Mech 143:97–107

    Google Scholar 

  96. Park BY, Kim SC, Jung B (1997) Interlaminar fracture toughness of carbon fiber/epoxy composites using short Kevlar fiber and/or Nylon-6 powder reinforcement. Polym Adv Technol 8:371–377

    CAS  Google Scholar 

  97. Wong DWY, Zhang H, Bilotti E, Peijs T (2017) Interlaminar toughening of woven fabric carbon/epoxy composite laminates using hybrid aramid/phenoxy interleaves. Compos Part A Appl Sci Manuf 101:151–159

    CAS  Google Scholar 

  98. De Morais AB (2003) Double cantilever beam testing of multidirectional laminates. Compos Part A Appl Sci Manuf 34:1135–1142

    Google Scholar 

  99. De Morais AB, De Moura MF, Gonçalves JPM, Camanho PP (2003) Analysis of crack propagation in double cantilever beam tests of multidirectional laminates. Mech Mater 35:641–652

    Google Scholar 

  100. Zabala H, Aretxabaleta L, Castillo G, Aurrekoetxea J (2015) Loading rate dependency on mode I interlaminar fracture toughness of unidirectional and woven carbon fibre epoxy composites. Compos Struct 121:75–82

    Google Scholar 

  101. De Morais AB, De Moura MF, Marques AT, De Castro PT (2002) Mode-I interlaminar fracture of carbon-epoxy cross-ply composites. Compos Sci Technol 62:679–686

    Google Scholar 

  102. Nisrin R, Abdelal SLD (2018) The effect of nylon and Kevlar stitching on the Mode I fracture of carbon/epoxy composites. Int J Aerosp Mech Eng 12:319–324

    Google Scholar 

  103. Hadavinia H, Ghasemnejad H (2009) Effects of Mode-I and Mode-II interlaminar fracture toughness on the energy absorption of CFRP twill/weave composite box sections. Compos Struct 89:303–314

    Google Scholar 

  104. Ogasawara T, Yoshimura A, Ishikawa T, Takahashi R, Sasaki N, Ogawa T (2012) Interlaminar fracture toughness of 5 harness satin woven fabric carbon fiber/epoxy composites. Adv Compos Mater 21:45–56

    CAS  Google Scholar 

  105. Kharratzadeh M, Shokrieh MM, Salamat-Talab M (2018) Effect of interface fiber angle on the mode I delamination growth of plain woven glass fiber-reinforced composites. Theor Appl Fract Mech 98:1–12

    Google Scholar 

  106. Pereira AB, De Morais AB, De Moura MFSF, Magalhães AG (2005) Mode I interlaminar fracture of woven glass/epoxy multidirectional laminates. Compos Part A Appl Sci Manuf 36:1119–1127

    Google Scholar 

  107. Kim JK, Sham ML (2000) Impact and delamination failure of woven-fabric composites. Compos Sci Technol 60:745–761

    Google Scholar 

  108. Triki E, Zouari B, Dammak F (2016) Dependence of the interlaminar fracture toughness of E-glass/polyester woven fabric composites laminates on ply orientation. Eng Fract Mech 159:63–78

    Google Scholar 

  109. Suppakul P, Bandyopadhyay S (2002) The effect of weave pattern on the mode-I interlaminar fracture energy of E-glass/vinyl ester composites. Compos Sci Technol 62:709–717

    CAS  Google Scholar 

  110. Yang S, Chalivendra VB, Kim YK (2017) Fracture and impact characterization of novel auxetic Kevlar®/epoxy laminated composites. Compos Struct 168:120–129

    Google Scholar 

  111. Navarro P, Aubry J, Pascal F, Marguet S, Ferrero JF, Dorival O (2014) Influence of the stacking sequence and crack velocity on fracture toughness of woven composite laminates in mode I. Eng Fract Mech 131:340–348

    Google Scholar 

  112. Alif N, Carlsson LA, Boogh L (1998) The effect of weave pattern and crack propagation direction on mode I delamination resistance of woven glass and carbon composites. Compos Part B Eng 29:603–611

    Google Scholar 

  113. Chocron T, Banks-Sills L (2019) Nearly Mode I fracture toughness and fatigue delamination propagation in a multidirectional laminate fabricated by a Wet-Layup. Phys Mesomech 22:107–140

    Google Scholar 

  114. Lim JI, Rhee KY, Kim HJ, Jung DH (2014) Effect of stacking sequence on the flexural and fracture properties of carbon/basalt/epoxy hybrid composites. Carbon Lett 15:125–128

    Google Scholar 

  115. Gill AF, Robinson P, Pinho S (2009) Effect of variation in fibre volume fraction on modes I and II delamination behaviour of 5HS woven composites manufactured by RTM. Compos Sci Technol 69:2368–2375

    CAS  Google Scholar 

  116. Compston P, Jar PYB (1999) Influence of fibre volume fraction on the mode I interlaminar fracture toughness of a glass-fibre/vinyl ester composite. Appl Compos Mater 6:353–368

    CAS  Google Scholar 

  117. ASTM D7905 (2014) Standard test method for determination of the mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites. ASTM 1–18

  118. ASTM-6671 (2007) Standard test method for mixed Mode I-Mode II interlaminar fracture toughness of unidirectional fiber reinforced polymer matrix composites. ASTM Stand 1–14

  119. Saidpour H, Barikani M, Sezen M (2003) Mode II interlaminar fracture toughness of carbon/epoxy laminates. Iran Polym J 12:389–400

    CAS  Google Scholar 

  120. Shivakumar KN, Panduranga R, Skujins J, Miller S (2015) Assessment of Mode-II fracture tests for unidirectional fiber reinforced composite laminates. J Reinf Plast Compos 34:1905–1925

    CAS  Google Scholar 

  121. Hosseini MR, Taheri-Behrooz F, Salamat-Talab M (2020) Mode II interlaminar fracture toughness of woven E-glass/epoxy composites in the presence of mat interleaves. Int J Adhes Adhes 98:1–8

    Google Scholar 

  122. Zhong ZP, Liu H (2017) Mode II Fracture of GFRP laminates bonded interfaces under 4-ENF Test. Adv Mater Sci Eng Hindawi 2017:1–10

    Google Scholar 

  123. Fakoor M, Khansari NM (2018) A new approach for investigation of mode II fracture toughness in orthotropic materials. Lat Am J Solids Struct 15:1–22

    Google Scholar 

  124. Esmaili A, Taheri-Behrooz F (2020) Effect of cohesive zone length on the delamination growth of the composite laminates under cyclic loading. Eng Fract Mech 237:1–14

    Google Scholar 

  125. Yadav SN, Kumar V, Verma SK (2006) Fracture toughness behaviour of carbon fibre epoxy composite with Kevlar reinforced interleave. Mater Sci Eng B Solid-State Mater Adv Technol 132:108–112

    CAS  Google Scholar 

  126. Yang IY, Jeong JY, Kim JH (2010) Fracture toughness of CFRP laminated plates according to resin content. Int J Precis Eng Manuf 11:309–313

    Google Scholar 

  127. Davies P, Casari P, Carlsson LA (2005) Influence of fibre volume fraction on mode II interlaminar fracture toughness of glass/epoxy using the 4ENF specimen. Compos Sci Technol 65:295–300

    CAS  Google Scholar 

  128. Martin R (1995) Composite materials: fatigue and fracture. ASTM STP 1230

  129. López-Menéndez A, Viña J, Argüelles A, Viña I, Rubiera S (2017) Analysis of mode III interlaminar fracture toughness of laminated composites using a novel testing device. Eng Fract Mech 173:55–63

    Google Scholar 

  130. De Morais AB, Pereira AB, de Moura MFSF, Magalhães AG (2009) Mode III interlaminar fracture of carbon/epoxy laminates using the edge crack torsion (ECT) test. Compos Sci Technol 69:670–676

    Google Scholar 

  131. Ge Y, Gong X, Hurez A, De Luycker E (2016) Test methods for measuring pure mode III delamination toughness of composite. Polym Test 55:261–268

    CAS  Google Scholar 

  132. Marat-Mendes R, de Freitas M (2009) Characterisation of the edge crack torsion (ECT) test for the measurement of the mode III interlaminar fracture toughness. Eng Fract Mech 76:2799–2809

    Google Scholar 

  133. Suemasu H (1999) An experimental method to measure the mode-III interlaminar fracture toughness of composite laminates. Compos Sci Technol 59:1015–1021

    Google Scholar 

  134. Mehrabadi FA, Khoshravan M (2013) Mode III interlaminar fracture and damage characterization in woven fabric-reinforced glass/epoxy composite laminates. J Compos Mater 47:1583–1592

    Google Scholar 

  135. Rizov V, Shindo Y, Horiguchi K, Narita F (2006) Mode III interlaminar fracture behavior of glass fiber reinforced polymer woven laminates at 293 to 4 K. Appl Compos Mater 13:287–304

    CAS  Google Scholar 

  136. Miura M, Shindo Y, Takeda T, Narita F (2012) Interlaminar fracture characterization of woven glass/epoxy composites under mixed-mode II/III loading conditions at cryogenic temperatures. Eng Fract Mech 96:615–625

    Google Scholar 

  137. Czabaj MW, Ratcliffe JG, Davidson BD (2014) Observation of intralaminar cracking in the edge crack torsion specimen. Eng Fract Mech 120:1–14

    Google Scholar 

  138. De Morais AB, Pereira AB (2008) Mixed mode II + III interlaminar fracture of carbon/epoxy laminates. Compos Sci Technol 68:2022–2027

    Google Scholar 

  139. Li X, Carlsson LA, Davies P (2004) Influence of fiber volume fraction on mode III interlaminar fracture toughness of glass/epoxy composites. Compos Sci Technol 64:1279–1286

    CAS  Google Scholar 

  140. ASTM D 5054 (2013) Standard test methods for plane-strain fracture toughness and strain energy release rate of plastic materials. ASTM B Stand 99:1–9

    Google Scholar 

  141. Czabaj MW, Ratcliffe JG (2013) Comparison of intralaminar and interlaminar mode I fracture toughnesses of a unidirectional IM7/8552 carbon/epoxy composite. Compos Sci Technol 89:15–23

    CAS  Google Scholar 

  142. Blanco N, Trias D, Pinho ST, Robinson P (2014a) Intralaminar fracture toughness characterisation of woven composite laminates. Part II: Experimental characterisation. Eng Fract Mech 131:361–370

    Google Scholar 

  143. Blanco N, Trias D, Pinho ST, Robinson P (2014b) Intralaminar fracture toughness characterisation of woven composite laminates. Part I: Design and analysis of a compact tension (CT) specimen. Eng Fract Mech 131:349–360

    Google Scholar 

  144. Montenegro DM, Bernasconi F, Zogg M, Gössi M, Libanori R, Wegener K, Studart AR (2017) Mode I transverse intralaminar fracture in glass fiber-reinforced polymers with ductile matrices. Compos Struct 165:65–73

    Google Scholar 

  145. Jung H, Kim Y (2015) Mode I fracture toughness of carbon-glass/epoxy interply hybrid composites. J Mech Sci Technol 29:1955–1962

    Google Scholar 

  146. Donadon MV, Falzon BG, Iannucci L, Hodgkinson JM (2007) Intralaminar toughness characterisation of unbalanced hybrid plain weave laminates. Compos Part A Appl Sci Manuf 38:1597–1611

    Google Scholar 

  147. Arasan Ş, Aktaş M, Balcıoğlu HE (2018) Fracture toughness of woven glass and carbon reinforced hybrid and non-hybrid composite plates. Polym Compos 39:783–793

    CAS  Google Scholar 

  148. Mahmoud MK (2003) Fracture toughness of single-edge notched fiber reinforced composite. Polym Plast Technol Eng 42:659–676

    CAS  Google Scholar 

  149. Ramsaroop A, Kanny K, Mohan TP (2010) Fracture toughness studies of polypropylene- clay nanocomposites andglass fibre reinfoerced polypropylene composites. Mater Sci Appl 01:301–309

    CAS  Google Scholar 

  150. Weibull Distribution: Characteristics of the Weibull Distribution. https://www.weibull.com/hotwire/issue14/relbasics14.htm

  151. Abd El-baky MA (2018) Impact performance of hybrid laminated composites with statistical analysis. Iran Polym J 27:445–459

    Google Scholar 

  152. Wang F, Ding J, Chen Z (2014) Statistical analysis of the progressive failure behavior for fiber-reinforced polymer composites under tensile loading. Polymers (Basel) 6:145–159

    CAS  Google Scholar 

  153. Vardhan AV, Charan VSS, Raj S, Hussaini SM, Rao GV (2019) Failure prediction of CFRP composites using Weibull analysis. In: AIP Conf Proc 020014-1-020014-7

  154. Barbero E, Fernández-Sáez J, Navarro C (2000) Statistical analysis of the mechanical properties of composite materials. Compos Part B Eng 31:375–381

    Google Scholar 

Download references

Acknowledgements

This study is financially supported by DRDO-ARMREB, Govt. of India under Grant no: ARMREB/MAA/2019/213.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anurag Dixit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, P., Mali, H.S. & Dixit, A. Mechanical behavior and fracture toughness characterization of high strength fiber reinforced polymer textile composites. Iran Polym J 30, 193–233 (2021). https://doi.org/10.1007/s13726-020-00884-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00884-8

Keywords

Navigation