Skip to main content

Advertisement

Log in

Comparative Evaluation of Cytotoxicity and Phytochemical Composition of Centaurea iconiensis (Rhaponticoides iconiensis)

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

Cancer is a disorder that results in abnormal and irregular proliferation of cells in the organ or tissue of the body. In Turkey flora, there are many medicinal plants that have great therapeutic importance. Rhaponticoides iconiensis is endemic to Turkey. In the present study, the methanol extracts and sub-extracts of leafy stem and flowers of R. iconiensis were evaluated for cytotoxic activity against Colo 205, A549, HepG2, MCF7 and Beas-2b cell lines by MTT method. The compounds of R. iconiensis extracts were characterized and quantitated by LC–MS/MS. As a result, methanol extracts were not cytotoxic against A549, but were cytotoxic to the Colo 205, HepG2, MCF-7 and Beas-2b cell lines. Among the sub-extracts, dichloromethane, ethyl acetate and n-hexane sub-extracts of flowers and dichloromethane sub-extract of the stem were most cytotoxic against A549, HepG2, MCF-7 and Colo 205 cell lines, respectively. As sub-extracts were most effective against MCF-7 cancer cell line, it can be said that extracts might be effective in estrogen-sensitive cancer cells such as breast and cervix. The cytotoxic effects of sub-extracts can be explained by the variances of compounds and synergistic effects of different secondary metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al ES, Martiskainen O, Sinkkonen J, Pihiaja K, Ayoub N, Singab A, El-Azizi M (2010) Chemical composition and bioactivity of Pleiogynium timorense (Anacardiaceae). Nat Prod Commun 5(4):545–550

    Google Scholar 

  • Alvarado-Sansininea JJ, Sanchez-Sanchez L, Lopez-Munoz H, Escobar ML, Flores-Guzman F, Tavera-Hernandez R, Jimenez-Estrada M (2018) Quercetagetin and patuletin: antiproliferative, necrotic and apoptotic activity in tumor cell lines. Mol 23:2579. https://doi.org/10.3390/molecules23102579

    Article  Google Scholar 

  • Astari KA, Erel SB, Bedir E, Karaalp C (2013) Secondary metabolites of Centaurea cadmea boiss. Rec Nat Prod 7(242):244

    Google Scholar 

  • Bakr RO, Mohamed S, Ayoub N (2016) Phenolic profile of Centaurea aegyptiaca L. growing in Egypt and its cytotoxic and antiviral activities. Afr J Tradit Complement Altern Med 13:135–143

    Google Scholar 

  • Barros L, Duenas M, Carvalho AM, Ferreira IC, Santos-Buelga C (2012) Characterization of phenolic compounds in flowers of wild medicinal plants from Northeastern Portugal. Food Chem Toxicol 50:1576–1582. https://doi.org/10.1016/j.fct.2012.02.004

    Article  Google Scholar 

  • Bravo L, Goya L, Lecumberri E (2007) LC/MS characterization of phenolic constituents of mate (Ilex paraguariensis, St. Hil.) and its antioxidant activity compared to commonly consumed beverages. Food Res Int 40:393–405

    Google Scholar 

  • Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018 GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer J Clin 68(6):394–424

    Google Scholar 

  • Bremer K, Anderberg AA, (1994) Asteraceae: cladistics & classification. (vol Sirsi) i9780881922752

  • Chen D et al (2008) Tea polyphenols, their biological effects and potential molecular targets. Histol Histopathol 23(4):487

    Google Scholar 

  • Clifford MN, Johnston KL, Knight S, Kuhnert N (2003) Hierarchical scheme for LC-MS n identification of chlorogenic acids. J Agric Food Chem 51:2900–2911

    Google Scholar 

  • Cooper G, Laird A, Nahar L, Sarker SD (2002) Lignan glucosides from the seeds of Centaurea americana (Compositae). Biochem Syst Ecol 30(1):65–67

    Google Scholar 

  • Çinbilgel İ, Eren Ö, Duman H (2014) Rhaponticoides gokceoglui (Asteraceae), a striking new species from Turkey. Phytotaxa 170(2):125–132

    Google Scholar 

  • Djeddi S, Argyropoulou C, Skaltsa H (2008) Secondary metabolites from Centaurea grisebachii ssp grisebachii. Biochem Syst Ecol 36:336–339

    Google Scholar 

  • Doğu S, Bağcı Y, Dinç M (2009) Rhaponticoidesaytachii sp. nov. (Asteraceae) from south Anatolia. Turkey Nord J Bot 27:479–482

    Google Scholar 

  • Duthie GG, Duthie SJ, Kyle JA (2000) Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nutr Res Rev 13:79–106

    Google Scholar 

  • Erel SB, Karaalp C, Bedir E, Kaehlig H, Glasl S, Khan S, Krenn L (2011) Secondary metabolites of Centaurea calolepis and evaluation of cnicin for anti-inflammatory antioxidant and cytotoxic activities. Pharm Biol 49(8):840–849

    Google Scholar 

  • Erel ŞB, Demir S, Kose FA, Ballar P, Karaalp C (2011) Cytotoxic properties of five Centaurea L. species from Anatolia. Planta Med 77(12):149

    Google Scholar 

  • Eren Ö (2007) The genus Rhaponticoides Vaill (Asteraceae) in Turkey: a new species and first key. Plant Syst Evol 267:13–23

    Google Scholar 

  • Erol-Dayi Ö, Pekmez M, Bona M, Aras-Perk A, Arda N (2011) Total Phenolic Contents Antioxidant Activities Cytotoxicity of Three CentaureaSpecies: C. calcitrapa subsp calcitrapa C. ptosimopappa C Spicata. Free Radic Antioxid 1:31–36

    Google Scholar 

  • Fernández-Fernández R, López-Martínez JC, Romero-González R, Martínez-Vidal JL, Flores MIA, Frenich AG (2010) Simple LC–MS determination of citric and malic acids in fruits and vegetables. Chromatogr 72:55–62

    Google Scholar 

  • Fernandez I, Garcia B, Grancha FJ, Pedro JR (1989) Sesquiterpene lactones, flavonoids and coumarins from Centaurea collina. Phytochem 28:2405–2407

    Google Scholar 

  • Fischer UA, Carle R, Kammerer DR (2011) Identification and quantification of phenolic compounds from pomegranate (Punica granatum L.) peel, mesocarp, aril and differently produced juices by HPLC-DAD–ESI/MSn. Food Chem 127:807–821

    Google Scholar 

  • Flamini G, Pardini M, Morelli I, Ertugrul K, Dural H, Bagci Y, Kargioglu M (2002) Flavonoid glycosides fromCentaurea pseudoscabiosasubsp.pseudoscabiosa from Turkey. Phytochem 61:433–437

    Google Scholar 

  • González RR, Fernández RF, Vidal JLM, Frenich AG, Pérez MLG (2011) Development and validation of an ultra high performance liquid chromatography–tandem mass-spectrometry (UHPLC–MS/MS) method for the simultaneous determination of neurotransmitters in rat brain samples. J Neurosci Methods 198:187–194

    Google Scholar 

  • Greuter W, Raus T (2010) Med Checklist Notulae, 28. Willdenowia 39:335–345

    Google Scholar 

  • Grieman M, Greaves J, Saltzman E (2015) A method for analysis of vanillic acid in polar ice cores. Clim of the past 11(2):227–232

    Google Scholar 

  • Gülcemal D, Alankuş-Çalışkan Ö, Karaalp C, Örs AU, Ballar P, Bedir E (2010) Phenolic glycosides with antiproteasomal activity from Centaurea urvilleiDC Subsp urvillei. Carbohydr Res 345:2529–2533

    Google Scholar 

  • Güner A, Aslan S, (2012) Türkiye bitkileri listesi:(damarlı bitkiler). Nezahat Gökyiǧit Botanik Bahçesi Yayınları

  • Hellwig F (2004) Centaureinae (Asteraceae) in the Mediterranean–history of ecogeographical radiation. Plant Syst Evol 246:137–162

    Google Scholar 

  • Horai H et al (2010) MassBank: a public repository for sharing mass spectral data for life sciences. J Mass Spectrom 45:703–714

    Google Scholar 

  • Janackovic P, Tesevic V, Milosavljevic S, Vajs V, Marin PD (2004) Sesquiterpene lactones lignans and flavones of Centaurea affinis. Biochem Syst Ecol 32:355–357

    Google Scholar 

  • Kaija-a-Kamb M, Amoros M, Girre L (1992) The chemistry and biological activity the the genus Centaurea. Pharm Acta Helv 67:178–188

    Google Scholar 

  • Karaçelik AA, Küçük M, İskefiyeli Z, Aydemir S, De Smet S, Miserez B, Sandra P (2015) Antioxidant components of Viburnum opulus L. determined by on-line HPLC–UV–ABTS radical scavenging and LC–UV–ESI-MS methods. Food Chem 175:106–114

    Google Scholar 

  • Karamenderes C, Konyalioglu S, Khan S, Khan IA (2007) Total phenolic contents, free radical scavenging activities and inhibitory effects on the activation of NF-kappa B of eight Centaurea L Species. Phytother Res 21:488–491. https://doi.org/10.1002/ptr.2097

    Article  Google Scholar 

  • Kelebek H, Selli S, Canbas A, Cabaroglu T (2009) HPLC determination of organic acids, sugars, phenolic compositions and antioxidant capacity of orange juice and orange wine made from a Turkish cv. Kozan Microchem J 91:187–192

    Google Scholar 

  • Köse YB, İşcan G, Göger F, Akalın G, Demirci B, Başer KHC (2016) Chemical composition and biological activity of Centaurea baseri: new species from Turkey. Chem Biodivers 13:1369–1379

    Google Scholar 

  • Lefort EC, Blay J (2013) Apigenin and its impact on gastrointestinal cancers. Mol Nutr Food Res 57:126–144. https://doi.org/10.1002/mnfr.201200424

    Article  Google Scholar 

  • Lin L-Z, Harnly JM (2010) Identification of the phenolic components of chrysanthemum flower (Chrysanthemum morifolium Ramat). Food Chem 120:319–326

    Google Scholar 

  • Lin L-Z et al (2000) Liquid chromatography–electrospray ionization mass spectrometry study of the flavonoids of the roots of Astragalus mongholicus andA Membranaceus. J Chromatogr 876:87–95

    Google Scholar 

  • Martins L (2007) Identity of Serratula bachtiarica Boiss & Hausskn. and Centaurea bachtiarica Hayek & Bornm. from Iran. Candollea 62:41–43

    Google Scholar 

  • Martucci MEP, De Vos RC, Carollo CA, Gobbo-Neto L (2014) Metabolomics as a potential chemotaxonomical tool: application in the genus Vernonia Schreb. PLoS ONE 9:e93149

    Google Scholar 

  • Nature IUfCo (2016) Guidelines for using the IUCN Red List categories and criteria. Standards and Petitions Subcommittee

  • Nature IUfCo, Commission ISS, Nature IUfCo, Commission NRSS (2001) IUCN Red List categories and criteria. IUCN

  • Negaresh K, Khoshroo SMR, Karamian R, Joharchi MR (2015) A revision of Rhaponticoides (Asteraceae, Cardueae–Centaureinae) from Iran. Phytotaxa 213(2):87

    Google Scholar 

  • Prasain JK, Wang CC, Barnes S (2004) Mass spectrometric methods for the determination of flavonoids in biological samples. Free Radic Biol Med 37:1324–1350. https://doi.org/10.1016/j.freeradbiomed.2004.07.026

    Article  Google Scholar 

  • Puntillo D, Peruzzi L (2009) A new species of Rhaponticoides(Asteraceae) from southern Italy. Folia Geobot 44(2):191–197

    Google Scholar 

  • Radan M, Carev I, Tesevic V, Politeo O, Culic VC (2017) Qualitative HPLC-DAD/ESI-TOF-MS Analysis, cytotoxic, and apoptotic effects of croatian endemic Centaurea ragusina L. Aqueous Extracts Chem Biodivers 14:e1700099. https://doi.org/10.1002/cbdv.201700099

    Article  Google Scholar 

  • Rocha LD, Monteiro MC, Teodoro AJ (2012) Anticancer properties of hydroxycinnamic acids-A Review. Cancer and clin oncol 1:109

    Google Scholar 

  • Rufatto LC, Finimundy TC, Roesch-Ely M, Moura S (2013) Mikania laevigata: chemical characterization and selective cytotoxic activity of extracts on tumor cell lines. Phytomed 20:883–889. https://doi.org/10.1016/j.phymed.2013.03.016

    Article  Google Scholar 

  • Sarker SD, Laird A, Nahar L, Kumarasamy Y, Jaspars M (2001) Indole alkaloids from the seeds of Centaurea cyanus(Asteraceae). Phytochem 57:1273–1276

    Google Scholar 

  • Shoeb M, Jaspars M, MacManus SM, Celik S, Nahar L, Kong-Thoo-Lin P, Sarker SD (2007) Anti-colon cancer potential of phenolic compounds from the aerial parts ofCentaurea gigantea (Asteraceae). J Nat Med 61:164

    Google Scholar 

  • Soliman FM, Moussa MY, Abdallah HM, Othman SM (2009) Cytotoxic activity of flavonoids of Jasonia montana Vahl. (Botsch)(Astraceae) growing in Egypt. Aust J Basic Appl Sci 3:148–152

    Google Scholar 

  • Tan K, Bancheva S, Vural M, Strid A (2009) Centaurea wagenitziana(Asteraceae: Centaureinae), a new species from the Eastern Balkans. Phytol Balc 15:51–58

    Google Scholar 

  • Ulubelen A, Öksüz S (1982) Cytotoxic flavones from Centaurea urvillei. J Nat Prod 45:373–373

    Google Scholar 

  • Wagenitz G, Hellwig FH, (1994) Evolution of characters and phylogeny of the Centaureinae. In: Compositae: Systematics. Proceedings of the International Compositae Conference, Kew. pp 491–510

  • Wagenitz G, Hellwig FH (2000) The genus Psephellus Cass. (Compositae, Cardueae) revisited with a broadened concept. Willdenowia 30:29–44

    Google Scholar 

  • Zhu X et al (2004) Simultaneous analysis of theanine, chlorogenic acid, purine alkaloids and catechins in tea samples with the help of multi-dimension information of on-line high performance liquid chromatography/electrospray–mass spectrometry. J Pharm Biomed Anal 34:695–704

    Google Scholar 

Download references

Acknowledgements

We are thankful to the Erciyes University Scientific Research Projects Coordinating Unit (project number THD-2019-8713) for financial support. The authors would like to thank Erciyes University Drug Application and Research Center (ERFARMA) for their support in the use of LC–MS/MS in this study.

Author information

Authors and Affiliations

Authors

Contributions

We declare that this work was done by the authors named in this article and all liabilities pertaining to claims relating to the content of this article will be borne by the authors. OT and LP contributed to collecting plant samples and extract preparation. LP performed qualitative chemical profiling of the phytoconstituents. ED and MŞ carried out cytotoxic activity tests and data analysis. LP, ED, OT and MŞ were designed the study and contributed to the critical reading of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Leyla Paşayeva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tugay, O., Paşayeva, L., Demirpolat, E. et al. Comparative Evaluation of Cytotoxicity and Phytochemical Composition of Centaurea iconiensis (Rhaponticoides iconiensis). Iran J Sci Technol Trans Sci 45, 65–75 (2021). https://doi.org/10.1007/s40995-020-01030-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-01030-y

Keywords

Navigation