Skip to main content
Log in

Extending the Boussinesq model for impacts in granular media

  • Brief Communication
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

Granular impact phenomena have implications in many areas. A fundamental problem deals with the mechanical response of a granular medium under external loads, such as those derived from the impact of a rigid object on the top of the medium. Here, the load changes its magnitude and intensity during the impact, being also applied in much shorter intervals than those of a static load, where the Boussinesq model is usually valid. This dynamic has been poorly addressed in the literature, a void to which this study aims to contribute, where we measure the pressure distribution transmitted at the bottom of a uniform, dry granular layer under the action of gravitational impacts of a steel sphere of fixed diameter. Exploring different bed thicknesses and drop heights, it is found that the structure of this distribution follows a similar form to the Boussinesq model, which was proposed initially for static conditions. This surprising result opens up several questions and future research challenges that could help validate or refute this model in other scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Melosh, H.J.: Impact Cratering. A Geologic Process. Oxford University Press, Oxford (1989)

    Google Scholar 

  2. Poran, C.J., Rodriguez, J.A.: Design of dynamic compaction. Can. Geotech. J. 29(5), 796 (1992)

    Article  Google Scholar 

  3. Murthy, V.N.S.: Geotechnical Engineering: Principles and Practices of Soil Mechanics and Foundation Engineering. CRC Press, Boca Raton (2008)

    Google Scholar 

  4. Bowles, J.E.: Foundation Analysis and Design. McGraw-Hill International, New York (1996)

    Google Scholar 

  5. Reydellet, G., Clément, E.: Green’s function probe of a static granular piling. Phys. Rev. Lett. 86, 3308 (2001)

    Article  ADS  Google Scholar 

  6. Bouchaud, J.P., Cates, M., Claudin, P.: Stress distribution in granular media and nonlinear wave equation. J. Phys. I 5(6), 639–656 (1995)

    Google Scholar 

  7. Bouchaud, J.P., Claudin, P., Levine, D., Otto, M.: Force chain splitting in granular materials: a mechanism for large-scale pseudo-elastic behaviour. Eur. Phys. J. E 4(4), 451 (2001)

    Article  Google Scholar 

  8. Bouchaud, J.P., Claudin, P., Clément, E., Otto, M., Reydellet, G.: The stress response function in granular materials. C. R. Phys. 3(2), 141 (2002)

    Article  ADS  Google Scholar 

  9. Goldenberg, C., Goldhirsch, I.: Force chains, microelasticity, and macroelasticity. Phys. Rev. Lett. 89, 084302 (2002)

    Article  ADS  Google Scholar 

  10. Goldenberg, C., Goldhirsch, I.: Friction enhances elasticity in granular solids. Nature 435(7039), 188 (2005)

    Article  ADS  Google Scholar 

  11. Goldenberg, C., Goldhirsch, I.: Effects of friction and disorder on the quasistatic response of granular solids to a localized force. Phys. Rev. E 77, 041303 (2008)

    Article  ADS  Google Scholar 

  12. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Combe, G., Claudin, P., Behringer, R.P., Clément, E.: Sensitivity of the stress response function to packing preparation. J. Phys. Condens. Matter 17(24), S2391 (2005)

    Article  ADS  Google Scholar 

  13. Atman, A.P.F., Brunet, P., Geng, J., Reydellet, G., Claudin, P., Behringer, R.P., Clément, E.: From the stress response function (back) to the sand pile “dip”. Eur. Phys. J. E 17(1), 93 (2005)

    Article  Google Scholar 

  14. Clark, A.H., Kondic, L., Behringer, R.P.: Particle scale dynamics in granular impact. Phys. Rev. Lett. 109, 238302 (2012)

    Article  ADS  Google Scholar 

  15. Clark, A.H., Petersen, A.J., Kondic, L., Behringer, R.P.: Nonlinear force propagation during granular impact. Phys. Rev. Lett. 114, 144502 (2015)

    Article  ADS  Google Scholar 

  16. Nazhat, Y., Airey, D.: The kinematics of granular soils subjected to rapid impact loading. Granular Matter 17(1), 1 (2015)

    Article  Google Scholar 

  17. Takizawa, S., Niiya, H., Tanabe, T., Nishimori, H., Katsuragi, H.: Impact-induced collapse of an inclined wet granular layer. Physica D Nonlinear Phenom. 386–387, 8–13 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  18. Ma, Z., Liao, H., Ning, C., Liu, L.: Numerical study of the dynamic compaction via DEM. Jpn. Geotech. Soc. Spec. Publ. 1, 17 (2015)

    Google Scholar 

  19. Gonzalez, C.M., Romo, M.P.: Nueva técnica de pluviación para formar depósitos de arena. Serie azul del Instituto de ingenieria. Universidad Nacional Autónoma de Mexico, SID 691 (2015)

  20. Ji, S., Chen, X., Li, P., Yan, Y.: Granular matter: a special buffer for impact load. AIP Conf. Proc. 1542(1), 401 (2013)

    Article  ADS  Google Scholar 

  21. Katsuragi, H., Durian, D.J.: Unified force law for granular impact cratering. Nat. Phys. 3(6), 420 (2007)

    Article  Google Scholar 

  22. Seguin, A., Bertho, Y., Gondret, P., Crassous, J.: Sphere penetration by impact in a granular medium: a collisional process. EPL (Europhys. Lett.) 88(4), 44002 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the Vicerrectoria de Investigación of the PUCV by the financial support of this research trough the project Investigador Emergente 039.371/19. We also thank Philippe Gondret and Aldo Tamburrino for their valuable comments and discussions on the article. Finally, we thank Hugo Tapia (PUCV) and Daniel Yunge (PUCV) for their technical support given during the construction of the experimental set-up.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Martínez.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez, F., Urrea, M.P., Gonzalez, C.M. et al. Extending the Boussinesq model for impacts in granular media. Granular Matter 23, 3 (2021). https://doi.org/10.1007/s10035-020-01065-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01065-3

Keywords

Navigation