Skip to main content
Log in

Acoustical Extinction of Flame on Moving Firebrand for the Fire Protection in Wildland–Urban Interface

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

Firebrands are a widely observed phenomenon in wildland fires, which can transport for a long distance, cause spot ignition in the wildland–urban interface (WUI) and increase the rate of wildfire spread. The flame attached to a moving firebrand behaves as a potential pilot source for ignition, so extinguishing such a flame in the process of moving can effectively minimize its fire hazard. In this work, firebrands were represented by a dry wood ball with a diameter of 20 mm and a weight of 2.9 g, which carried a flame with the heat release rate of 250 W. The firebrand was held by a pendulum system to adjust the velocity. Results showed that there is a minimum sound pressure to extinguish the firebrand flame, which increases slightly with the sound frequency. As the firebrand velocity increases from 0 m/s to 4.2 m/s, the minimum sound pressure for extinction decreases significantly from 114 dB to 90 dB. The cumulative effect of firebrand motion and acoustic oscillation was found to facilitate flame extinction. A characteristic Damköhler number (~ 1), with the ratio of the fuel residence time to the flame chemical time, is used to quantify the extinction limit of the flaming firebrand. This work provides a potential technical solution to mitigate the hazard of firebrand flame and spotting ignition in WUI and helps understand the influence of acoustic waves on the flame stability on the solid fuel.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. O’Connor J, Acharya V, Lieuwen T (2015) Transverse combustion instabilities: Acoustic, fluid mechanic, and flame processes. Prog Energy Combust Sci 49:1–39. https://doi.org/10.1016/j.pecs.2015.01.001

    Article  Google Scholar 

  2. Kim JS, Williams FA (1994) Contribution of strained diffusion flames to acoustic pressure response. Combust Flame 98:279–299. https://doi.org/10.1016/0010-2180(94)90242-9  

    Article  Google Scholar 

  3. Baillot F, Lespinasse F (2014) Response of a laminar premixed V-flame to a high-frequency transverse acoustic field. Combust Flame 161:1247–1267. https://doi.org/10.1016/j.combustflame.2013.11.009

    Article  Google Scholar 

  4. Wang Q, Huang HW, Tang HJ, et al (2013) Nonlinear response of buoyant diffusion flame under acoustic excitation. Fuel 103:364–372. https://doi.org/10.1016/j.fuel.2012.08.008

    Article  Google Scholar 

  5. DARPA Instant Flame Suppression Phase II—Final Report. The Defense Advanced Research Projects Agency 1–23

  6. Friedman AN, Stoliarov SI (2017) Acoustic extinction of laminar line-flames. Fire Saf J 93:102–113. https://doi.org/10.1016/j.firesaf.2017.09.002

    Article  Google Scholar 

  7. Niegodajew P, Łukasiak K, Radomiak H, et al (2018) Application of acoustic oscillations in quenching of gas burner flame. Combust Flame 194:245–249. https://doi.org/10.1016/j.combustflame.2018.05.007

    Article  Google Scholar 

  8. Yamazaki T, Matsuoka T, Nakamura Y (2019) Dynamic response of non-premixed flames subjected to acoustic wave. 12th Asia-Pacific conference on combustion, 4 July 2019

  9. Xiong C, Liu Y, Xu C, Huang X (2020) Extinguishing the dripping flame by acoustic wave. Fire Saf J 103109. https://doi.org/10.1016/j.firesaf.2020.103109

  10. Manzello SL, Suzuki S, Gollner MJ, Fernandez-Pello AC (2020) Role of firebrand combustion in large outdoor fire spread. Prog Energy Combust Sci 76:100801. https://doi.org/10.1016/j.pecs.2019.100801

    Article  Google Scholar 

  11. Manzello SL (2014) Special issue on wildland–urban interface (WUI) fires. Fire Technol 50:7–8

    Article  Google Scholar 

  12. Manzello SL, Foote EID (2014) Characterizing firebrand exposure from wildland–urban interface (WUI) fires: results from the 2007 Angora Fire. Fire Technol 50:105–124. https://doi.org/10.1007/s10694-012-0295-4

    Article  Google Scholar 

  13. Pastor E, Zarate L, Planas E, et al (2003) Mathematical models and calculation systems for the study of wildland fire behaviour. Prog Energy Combust Sci 29:139–153. https://doi.org/10.1016/s0360-1285(03)00017-0

    Article  Google Scholar 

  14. Koo E, Pagni PJ, Weise DR, Woycheese JP (2010) Firebrands and spotting ignition in large-scale fires. Int J Wildl Fire 19:818–843. https://doi.org/10.1071/wf07119

    Article  Google Scholar 

  15. Caton SE, Hakes RSP, Gorham DJ, et al (2016) Review of pathways for building fire spread in the wildland urban interface part I: exposure conditions. Fire Technol 53:429-473. https://doi.org/10.1007/s10694-016-0589-z

    Article  Google Scholar 

  16. Fernandez-Pello AC (2017) Wildland fire spot ignition by sparks and firebrands. Fire Saf J 91:2–10. https://doi.org/10.1016/j.firesaf.2017.04.040

    Article  Google Scholar 

  17. Song J, Huang X, Liu N, et al (2017) The wind effect on the transport and burning of firebrands. Fire Technol 53:1555–1568. https://doi.org/10.1007/s10694-017-0647-1

    Article  Google Scholar 

  18. Manzello SL, Cleary TG, Shields JR, Yang JC (2006) Ignition of mulch and grasses by firebrands in wildland-urban interface fires. Int J Wildl Fire 15:427–431. https://doi.org/10.1071/wf06031

    Article  Google Scholar 

  19. Sardoy N, Consalvi JL, Porterie B, Fernandez-Pello AC (2007) Modeling transport and combustion of firebrands from burning trees. Combust Flame 150:151–169. https://doi.org/10.1016/j.combustflame.2007.04.008

    Article  Google Scholar 

  20. Suzuki S, Manzello SL, Kagiya K, et al (2014) Ignition of mulch beds exposed to continuous wind-driven firebrand showers. Fire Technol 51:905–922. https://doi.org/10.1007/s10694-014-0425-2

    Article  Google Scholar 

  21. Manzello SL (2020) Introduction to the special section on global overview of large outdoor fire standards. Fire Technol 56:1827–1829. https://doi.org/10.1007/s10694-020-00962-6

    Article  Google Scholar 

  22. Tarifa CS, del Notario PP, Moreno FG (1965) On the flight paths and lifetimes of burning particles of wood. Symp (Int) Combust 10:1021–1037. https://doi.org/10.1016/s0082-0784(65)80244-2

    Article  Google Scholar 

  23. Santoso MA, Christensen EG, Yang J, Rein G (2019) Review of the transition from smouldering to flaming combustion in wildfires. Front Mech Eng 5:49. https://doi.org/10.3389/fmech.2019.00049

    Article  Google Scholar 

  24. Suzuki S, Manzello SL (2018) Characteristics of firebrands collected from actual urban fires. Fire Technol 54:1533–1546. https://doi.org/10.1007/s10694-018-0751-x

    Article  Google Scholar 

  25. Filkov A, Prohanov S, Mueller E, et al (2017) Investigation of firebrand production during prescribed fires conducted in a pine forest. Proc Combust Inst 36:3263–3270. https://doi.org/10.1016/j.proci.2016.06.125

    Article  Google Scholar 

  26. Koo E, Linn RR, Pagni PJ, Edminster CB (2012) Modelling firebrand transport in wildfires using HIGRAD/FIRETEC. Int J Wildl Fire 21:396–417. https://doi.org/10.1071/wf09146

    Article  Google Scholar 

  27. Manzello SL, Suzuki S (2017) Generating wind-driven firebrand showers characteristic of burning structures. Proc Combust Inst 36:3247–3252. https://doi.org/10.1016/j.proci.2016.07.009

    Article  Google Scholar 

  28. Bartlett AI, Hadden RM, Bisby LA (2019) A review of factors affecting the burning behaviour of wood for application to tall timber construction. Fire Technol 55:1–49. https://doi.org/10.1007/s10694-018-0787-y

    Article  Google Scholar 

  29. Hadden RM, Law A (2020) The variability of critical mass loss rate at auto-extinction. Fire Technol. https://doi.org/10.1007/s10694-020-01002-z

    Article  Google Scholar 

  30. Lyons KM (2007) Toward an understanding of the stabilization mechanisms of lifted turbulent jet flames: experiments. Prog Energy Combust Sci 33:211–231. https://doi.org/10.1016/j.pecs.2006.11.001  

    Article  Google Scholar 

  31. Williams FA (2000) Progress in knowledge of flamelet structure and extinction. Prog Energy Combust Sci 26:657–682. https://doi.org/10.1016/S0360-1285(00)00012-5  

    Article  Google Scholar 

  32. Bergman T, Incropera F, Lavine A, DeWitt D (2011) Introduction to heat transfer. A John Wiley & Sons

  33. Drysdale D (2011) An introduction to fire dynamics. A John Wiley & Sons

  34. Muraszew A, Fedele JB, Kuby WC (1976) Investigation of fire whirls and firebrands. Northern Forest Fire Laboratory, Intermountain Forest and Range Experiment Station

  35. Babrauskas V (2020) Firebrands and embers, In: Encyclopedia of wildfires and wildland–urban interface (WUI) fires 310–550. https://doi.org/10.1007/978-3-319-52090-2_3

  36. Huang X, Gao J (2020) A review of near-limit opposed fire spread. Fire Saf J 103141. https://doi.org/10.1016/j.firesaf.2020.103141

Download references

Acknowledgements

This study received financial support from National Natural Science Foundation of China (No. 52006185, 51876183), the National Key R&D Program of China (No. 2018YFB1501405), Hong Kong Polytechnic University (1-BE04), PolyU Emerging Frontier Area (EFA) Scheme of RISUD (P0013879), and ZJU SKLCEU Open Fund (ZJUCEU2018012).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cangsu Xu or Xinyan Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Video 1 Stationary firebrand flame in acoustic Wave (AVI 13647 kb)

Supplementary Video 2 Extinction of stationary firebrand flame (AVI 15869 kb)

Supplementary Video 3 Moving flaming firebrand without sound (AVI 6388 kb)

Supplementary Video 4 Moving flaming firebrand with 90 dB sound (AVI 5647 kb)

Supplementary Video 5 Extinction of a moving flaming firebrand (AVI 6388 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, C., Liu, Y., Xu, C. et al. Acoustical Extinction of Flame on Moving Firebrand for the Fire Protection in Wildland–Urban Interface. Fire Technol 57, 1365–1380 (2021). https://doi.org/10.1007/s10694-020-01059-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-020-01059-w

Keywords

Navigation