Skip to main content
Log in

Femtoscopy of the Origin of the Nucleon Mass

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

We study the prospects of using femtoscopic low-momentum correlation measurements at the Large Hadron Collider to access properties of the \(J/\psi \)-nucleon interaction. The QCD multipole expansion in terms of the \(J/\psi \) chromopolarizability relates the forward scattering amplitude to a key matrix element to the origin of the nucleon mass problem, the average chromoelectric gluon distribution in the nucleon. We use information on the \(J/\psi \)-nucleon interaction provided by lattice QCD simulations and phenomenological models to compute \(J/\psi \)-nucleon correlation functions. The computed correlation functions show clear sensitivity to the interaction, in particular to the \(J/\psi \) chromopolarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The total momentum is \({{\varvec{P}}}= {{\varvec{p}}}_1 + {{\varvec{p}}}_2\) and the relative momentum is \({{\varvec{k}}}= (m_2 {{\varvec{p}}}_1 - m_1 {{\varvec{p}}}_2)/(m_1 + m_2)\), where \(m_1, m_2\) are the particles’ masses. In the center of mass frame, \({{\varvec{P}}}= 0\) and \({{\varvec{p}}}_1 = -{{\varvec{p}}}_2\); hence, the relative momentum is \({{\varvec{k}}}= {{\varvec{p}}}_1 = - {{\varvec{p}}}_2\).

References

  1. F. Wilczek, The Lightness of Being: Mass, Ether, and the Unification of Forces (Basic Books, Berlin, 2008)

    Google Scholar 

  2. C.D. Roberts, Few Body Syst. 58(1), 5 (2017). https://doi.org/10.1007/s00601-016-1168-z

    Article  ADS  Google Scholar 

  3. C.D. Roberts, S.M. Schmidt, arXiv:2006.08782 [hep-ph] (2020)

  4. G. Baym (Chair), An Assessment of U.S.-Based Electron-Ion Collider Science (The National Academies Press, 2018). https://doi.org/10.17226/25171

  5. Z.E. Meziani, S. Joosten, Probing Nucleons and Nuclei in High Energy Collisions: Dedicated to the Physics of the Electron Ion Collider 234–237 (2020). https://doi.org/10.1142/9789811214950_0048

  6. X. Chen, F.K. Guo, C.D. Roberts, R. Wang, Few Body Syst. 61(4), 43 (2020). https://doi.org/10.1007/s00601-020-01574-0

  7. R. Lednicky, V. Lyuboshits, in CORINNE 90 - International Workshop on Particle Correlations and Interferometry in Nuclear Collisions (1990). https://doi.org/10.1142/1178

  8. U.W. Heinz, B.V. Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999). https://doi.org/10.1146/annurev.nucl.49.1.529

    Article  ADS  Google Scholar 

  9. M.A. Lisa, S. Pratt, R. Soltz, U. Wiedemann, Ann. Rev. Nucl. Part. Sci. 55, 357 (2005). https://doi.org/10.1146/annurev.nucl.55.090704.151533

    Article  ADS  Google Scholar 

  10. S. Koonin, Phys. Lett. B 70, 43 (1977). https://doi.org/10.1016/0370-2693(77)90340-9

    Article  ADS  Google Scholar 

  11. R. Lednicky, V. Lyuboshits, Sov. J. Nucl. Phys. 35, 770 (1982)

    Google Scholar 

  12. M.E. Peskin, Nucl. Phys. B 156, 365 (1979). https://doi.org/10.1016/0550-3213(79)90199-8

    Article  ADS  Google Scholar 

  13. G. Bhanot, M.E. Peskin, Nucl. Phys. B 156, 391 (1979). https://doi.org/10.1016/0550-3213(79)90200-1

    Article  ADS  Google Scholar 

  14. A. Kaidalov, P. Volkovitsky, Phys. Rev. Lett. 69, 3155 (1992). https://doi.org/10.1103/PhysRevLett.69.3155

    Article  ADS  Google Scholar 

  15. M.E. Luke, A.V. Manohar, M.J. Savage, Phys. Lett. B 288, 355 (1992). https://doi.org/10.1016/0370-2693(92)91114-O

    Article  ADS  Google Scholar 

  16. D. Kharzeev, Proc. Int. Sch. Phys. Fermi 130, 105 (1996). https://doi.org/10.3254/978-1-61499-215-8-105

    Article  Google Scholar 

  17. G.F. de Teramond, R. Espinoza, M. Ortega-Rodriguez, Phys. Rev. D 58, 034012 (1998). https://doi.org/10.1103/PhysRevD.58.034012

    Article  ADS  Google Scholar 

  18. S.J. Brodsky, G.A. Miller, Phys. Lett. B 412, 125 (1997). https://doi.org/10.1016/S0370-2693(97)01045-9

    Article  ADS  Google Scholar 

  19. S.H. Lee, C. Ko, Phys. Rev. C 67, 038202 (2003). https://doi.org/10.1103/PhysRevC.67.038202

  20. A. Sibirtsev, M. Voloshin, Phys. Rev. D 71, 076005 (2005). https://doi.org/10.1103/PhysRevD.71.076005

    Article  ADS  Google Scholar 

  21. M. Voloshin, Prog. Part. Nucl. Phys. 61, 455 (2008). https://doi.org/10.1016/j.ppnp.2008.02.001

    Article  ADS  Google Scholar 

  22. G. Krein, A. Thomas, K. Tsushima, Prog. Part. Nucl. Phys. 100, 161 (2018). https://doi.org/10.1016/j.ppnp.2018.02.001

    Article  ADS  Google Scholar 

  23. M. Shifman, A. Vainshtein, V. Zakharov, Phys. Lett. B 78(4), 443 (1978). https://doi.org/10.1016/0370-2693(78)90481-1

    Article  ADS  Google Scholar 

  24. J.F. Donoghue, in Physics with Light Mesons and on\(\pi N\)Physics, ed. by W.R. Gibbs, B.M.K. Nefkens (1987)

  25. J. Adams et al., Phys. Rev. C 74, 064906 (2006). https://doi.org/10.1103/PhysRevC.74.064906

    Article  ADS  Google Scholar 

  26. G. Agakishiev et al., Phys. Rev. C 82, 021901 (2010). https://doi.org/10.1103/PhysRevC.82.021901

    Article  ADS  Google Scholar 

  27. L. Adamczyk et al., Phys. Rev. Lett. 114(2), 022301 (2015). https://doi.org/10.1103/PhysRevLett.114.022301

    Article  ADS  Google Scholar 

  28. J. Adamczewski-Musch et al., Phys. Rev. C 94(2), 025201 (2016). https://doi.org/10.1103/PhysRevC.94.025201

    Article  ADS  Google Scholar 

  29. J. Adam et al., Phys. Lett. B 790, 490 (2019). https://doi.org/10.1016/j.physletb.2019.01.055

    Article  ADS  Google Scholar 

  30. S. Acharya et al., Phys. Rev. C 99(2), 024001 (2019). https://doi.org/10.1103/PhysRevC.99.024001

    Article  ADS  Google Scholar 

  31. S. Acharya et al., Phys. Lett. B 805, 135419 (2020). https://doi.org/10.1016/j.physletb.2020.135419

    Article  Google Scholar 

  32. S. Acharya et al., Phys. Rev. Lett. 123(11), 112002 (2019). https://doi.org/10.1103/PhysRevLett.123.112002

    Article  ADS  Google Scholar 

  33. S. Acharya et al., Phys. Lett. B 797, 134822 (2019). https://doi.org/10.1016/j.physletb.2019.134822

    Article  Google Scholar 

  34. E. Chizali, First measurement of the \(\phi -\)proton correlation function with ALICE in pp collisions at \(\sqrt{s} = 13\) TeV. Bachelorarbeit, Technische Universität München, München, Germany (2019)

  35. K. Yokokawa, S. Sasaki, T. Hatsuda, A. Hayashigaki, Phys. Rev. D 74, 034504 (2006). https://doi.org/10.1103/PhysRevD.74.034504

    Article  ADS  Google Scholar 

  36. L. Liu, H.W. Lin, K. Orginos, PoS. LATTICE. (2008). https://doi.org/10.22323/1.066.0112

  37. T. Kawanai, S. Sasaki, PoS LATTICE2010, 156 (2010). https://doi.org/10.22323/1.105.0156

  38. T. Kawanai, S. Sasaki, Phys. Rev. D 82, 091501 (2010). https://doi.org/10.1103/PhysRevD.82.091501

    Article  ADS  Google Scholar 

  39. T. Kawanai, S. Sasaki, A. I. P. Conf. Proc. 1388(1), 640 (2011). https://doi.org/10.1063/1.3647474

    Article  ADS  Google Scholar 

  40. M. Alberti, G.S. Bali, S. Collins, F. Knechtli, G. Moir, W. Söldner, Phys. Rev. D 95(7), 074501 (2017). https://doi.org/10.1103/PhysRevD.95.074501

    Article  ADS  Google Scholar 

  41. T. Sugiura, Y. Ikeda, N. Ishii, EPJ Web Conf. 175, 05011 (2018). https://doi.org/10.1051/epjconf/201817505011

    Article  Google Scholar 

  42. U. Skerbis, S. Prelovsek, Phys. Rev. D 99(9), 094505 (2019). https://doi.org/10.1103/PhysRevD.99.094505

    Article  ADS  Google Scholar 

  43. T. Sugiura, Y. Ikeda, N. Ishii, PoS LATTICE2018, 093 (2019). https://doi.org/10.22323/1.334.0093

  44. S. Beane, E. Chang, S. Cohen, W. Detmold, H.W. Lin, K. Orginos, A. Parreño, M. Savage, Phys. Rev. D 91(11), 114503 (2015). https://doi.org/10.1103/PhysRevD.91.114503

    Article  ADS  Google Scholar 

  45. A. Hosaka, T. Hyodo, K. Sudoh, Y. Yamaguchi, S. Yasui, Prog. Part. Nucl. Phys. 96, 88 (2017). https://doi.org/10.1016/j.ppnp.2017.04.003

    Article  ADS  Google Scholar 

  46. J. Tarrús Castellà, G. Krein, Phys. Rev. D 98(1), 014029 (2018). https://doi.org/10.1103/PhysRevD.98.014029

  47. J. Ferretti, E. Santopinto, M. Naeem, M. Bedolla, Phys. Lett. B 789, 562 (2019). https://doi.org/10.1016/j.physletb.2018.09.047

    Article  ADS  Google Scholar 

  48. M.I. Eides, V.Y. Petrov, M.V. Polyakov, Eur. Phys. J. C 78(1), 36 (2018). https://doi.org/10.1140/epjc/s10052-018-5530-9

    Article  ADS  Google Scholar 

  49. S. Dubynskiy, M. Voloshin, Phys. Lett. B 666, 344 (2008). https://doi.org/10.1016/j.physletb.2008.07.086

    Article  ADS  Google Scholar 

  50. K. Goeke, J. Grabis, J. Ossmann, M. Polyakov, P. Schweitzer, A. Silva, D. Urbano, Phys. Rev. D 75, 094021 (2007). https://doi.org/10.1103/PhysRevD.75.094021

    Article  ADS  Google Scholar 

  51. M.S. Chanowitz, J.R. Ellis, Phys. Lett. B 40, 397 (1972). https://doi.org/10.1016/0370-2693(72)90829-5

    Article  ADS  Google Scholar 

  52. R. Crewther, Phys. Rev. Lett. 28, 1421 (1972). https://doi.org/10.1103/PhysRevLett.28.1421

    Article  ADS  Google Scholar 

  53. M.S. Chanowitz, J.R. Ellis, Phys. Rev. D 7, 2490 (1973). https://doi.org/10.1103/PhysRevD.7.2490

    Article  ADS  Google Scholar 

  54. D.Z. Freedman, I.J. Muzinich, E.J. Weinberg, Ann. Phys. 87, 95 (1974). https://doi.org/10.1016/0003-4916(74)90448-5

    Article  ADS  Google Scholar 

  55. J.C. Collins, A. Duncan, S.D. Joglekar, Phys. Rev. D 16, 438 (1977). https://doi.org/10.1103/PhysRevD.16.438

    Article  ADS  Google Scholar 

  56. S. Pratt, Phys. Rev. Lett. 53, 1219 (1984). https://doi.org/10.1103/PhysRevLett.53.1219

    Article  ADS  Google Scholar 

  57. W. Bauer, C. Gelbke, S. Pratt, Ann. Rev. Nucl. Part. Sci. 42, 77 (1992). https://doi.org/10.1146/annurev.ns.42.120192.000453

    Article  ADS  Google Scholar 

  58. D. Anchishkin, U.W. Heinz, P. Renk, Phys. Rev. C 57, 1428 (1998). https://doi.org/10.1103/PhysRevC.57.1428

    Article  ADS  Google Scholar 

  59. A. Ohnishi, K. Morita, K. Miyahara, T. Hyodo, Nucl. Phys. A 954, 294 (2016). https://doi.org/10.1016/j.nuclphysa.2016.05.010

    Article  ADS  Google Scholar 

  60. K. Morita, A. Ohnishi, F. Etminan, T. Hatsuda, Phys. Rev. C 94(3), 031901 (2016). https://doi.org/10.1103/PhysRevC.94.031901. [Erratum: Phys. Rev. C 100, 069902 (2019)]

  61. J. Haidenbauer, Nucl. Phys. A 981, 1 (2019). https://doi.org/10.1016/j.nuclphysa.2018.10.090

    Article  ADS  Google Scholar 

  62. J. Haidenbauer, G. Krein, T. Peixoto, Eur. Phys. J. A 56(7), 184 (2020). https://doi.org/10.1140/epja/s10050-020-00190-0

    Article  ADS  Google Scholar 

  63. H. Bethe, Phys. Rev. 76, 38 (1949). https://doi.org/10.1103/PhysRev.76.38

    Article  ADS  Google Scholar 

  64. N. Brambilla, G. Krein, J. Tarrús Castellà, A. Vairo, Phys. Rev. D 93(5), 054002 (2016). https://doi.org/10.1103/PhysRevD.93.054002

  65. A. Hayashigaki, Prog. Theor. Phys. 101, 923 (1999). https://doi.org/10.1143/PTP.101.923

    Article  ADS  Google Scholar 

  66. O. Gryniuk, M. Vanderhaeghen, Phys. Rev. D 94(7), 074001 (2016). https://doi.org/10.1103/PhysRevD.94.074001

    Article  ADS  Google Scholar 

  67. I. Strakovsky, D. Epifanov, L. Pentchev, Phys. Rev. C 101(4), 042201 (2020). https://doi.org/10.1103/PhysRevC.101.042201

    Article  ADS  Google Scholar 

  68. L. Pentchev, I.I. Strakovsky, arXiv:2009.04502 [hep-ph] (2020)

  69. M.V. Polyakov, P. Schweitzer, Phys. Rev. D 98(3), 034030 (2018). https://doi.org/10.1103/PhysRevD.98.034030

    Article  ADS  Google Scholar 

  70. K. Tsushima, D. Lu, G. Krein, A. Thomas, Phys. Rev. C 83, 065208 (2011). https://doi.org/10.1103/PhysRevC.83.065208

    Article  ADS  Google Scholar 

  71. G. Krein, A. Thomas, K. Tsushima, Phys. Lett. B 697, 136 (2011). https://doi.org/10.1016/j.physletb.2011.01.037

    Article  ADS  Google Scholar 

  72. G. Krein, J. Phys. Conf. Ser. 422, 012012 (2013). https://doi.org/10.1088/1742-6596/422/1/012012

    Article  Google Scholar 

Download references

Acknowledgements

Enlightening and useful discussions with Johann Haidenbauer are gratefully acknowledged. G.K was partially supported by: Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq, Grants No. Grant. nos. 309262/2019-4, 464898/2014-5 (INCT Física Nuclear e Aplicações), Fundação de Amparo à Pesquisa do Estado de São Paulo-FAPESP, Grant No. 2013/01907-0. T.C.P was supported by a scholarship from Conselho Nacional de Desenvolvimento Científico e Tecnológico-CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Krein.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krein, G., Peixoto, T.C. Femtoscopy of the Origin of the Nucleon Mass. Few-Body Syst 61, 49 (2020). https://doi.org/10.1007/s00601-020-01581-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01581-1

Navigation