Skip to main content
Log in

Pattern evaluation of operational radar reflectivity–rainfall relationship for Quitandinha River flooding events: Petrópolis, Rio de Janeiro (Brazil)

  • Original Article
  • Published:
Environmental Earth Sciences Aims and scope Submit manuscript

Abstract

Real-time rainfall distribution is required for decision-making based on the support of warning systems, especially in situations of imminent floodings and landslides. In this work, six relationships on radar reflectivity–rainfall relationships were calibrated and evaluated for 33 rainfall events associated with Quitandinha River flooding with occurred between 2013 and 2016. These events were chosen with the purpose of finding new relationships that could characterize with better accuracy the properties of storms and precipitation associated with Quitandinha floods. The procedure of applying variations of 5%, 10%, and 20% in reflectivity band-pass filter was used to minimize the different types of uncertainties associated with the measurement of radar reflectivity and rain gauges. Multiple linear regression analysis approach showed that radar reflectivity–rainfall relationships which were calibrated at 20% presented the lowest dimensionless coefficient of variability (CV), systematic error (BIAS), mean absolute deviation MAD), and root-mean-square error (RMSE). The calibrated expression between Marshall–Palmer and Nexrad showed the best performance among the six relationships examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Araujo LMN, Abdalad MA, Sato AM, Araujo AAM, Avelar ADS, Netto ALC, Filho OCR (2013) Chuvas intensas recorrentes na região da Serra do Mar/RJ. https://www.abrh.org.br/SGCv3/index.php?PUB=3&ID=155&SUMARIO=3964&ST=chuvas_intensas_recorrentes_na_regiao_da_serra_do_mar_rj. Accessed 12 July 2017

  • Atlas D (1994) Advances in radar meteorology Advances in geophysics. Academic Press, New York

    Google Scholar 

  • Atlas D, Ulbrich C, Marks FD, Black RA, Amitai E, Willis PT, Samsury CE (2000) Partitioning tropical oceanic convective and stratiform rains by draft strength. J Geoph Res 105:2259–2267

    Article  Google Scholar 

  • Austin PM (1987) Relation between measured radar reflectivity and surface rainfall. Mon Weather Rev 115:1053–1071. https://doi.org/10.1175/1520-0493(1987)115%3c1053:RBMRRA%3e2.0.CO;2

    Article  Google Scholar 

  • Bahiense JM, Júnior JEFF, Costa LF, Charge LT (2015) Monitoramento hidrológico quantitativo no estado do Rio de Janeiro: Importância, histórico e modernização. http://www.evolvedoc.com.br/sbrh/detalhes-991. Accessed 03 Jan 2016

  • Battan LJ (1973) Radar Observation of the Atmosphere. Univ. of Chicago Press, Chicago

    Google Scholar 

  • Battan LJ (1976) A Z-R Vertical Air Motions and Z-R Relationships. J Appl Meteorol 15:1120–1121

    Article  Google Scholar 

  • Boers N, Bookhagen B, Marwan N, Kurths J (2015) Spatiotemporal characteristics and synchronization of extreme rainfall in South America with focus on the Andes Mountain range. Clim Dyn 46:601–617. https://doi.org/10.1007/s00382-015-2601-6

    Article  Google Scholar 

  • Brito TT, Oliveira-Júnior JF, Lyra GB, Gois G, Zeri M (2016) Multivariate analysis applied to monthly rainfall over Rio de Janeiro state Brazil. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-016-0481-x

    Article  Google Scholar 

  • Burgess DW, Ray PS (1986) Principles of the Radar. In: Ray P (ed) Mesoscale Meteorology and Forecasting. American Meteorological Society, Boston, pp 85–117

    Chapter  Google Scholar 

  • Campos E, Zawadski I (2000) Instrumental uncertainties in Z-R relations. J Appl Meteor 39:1088–1102

    Article  Google Scholar 

  • Canli E, Loigge B, Glade T (2017) Spatially distributed rainfall information and its potential for regional landslide early warning systems. Nat Hazards. https://doi.org/10.1007/s11069-017-2953-9

    Article  Google Scholar 

  • Cataneo R (1969) A method for estimating rainfall rate-radar reflectivity relationships. J Appl Meteor 8:815–819

    Article  Google Scholar 

  • Chumchean S (2004) Improved estimation of radar rainfall for use in hydrological modelling. PhD Thesis, University of New South Wales, Sydney.

  • Ciach GJ (2003) Local random errors in tipping-bucket rain gauge measurements. J Atmos Ocean Technol 20:752–759

    Article  Google Scholar 

  • CPTEC (2016) Centro de Previsão do Tempo e Estudos Climáticos. https://www.cptec.inpe.br/. Accessed in 04 May 2017

  • Cunning JB, Sax I (1977) A Z-R relationship for the GATE B-scale array. Mon Wea Rev 105:1330–1336

    Article  Google Scholar 

  • Cyr I (2004) Estimation of Z-R relationship and comparative analysis of precipitation data from colocated rain-gauge, vertical radar and disdrometer. Dissertation, Norwegian University of Science and Technology.

  • Davini P, Bechini R, Cremonini R, Cassardo C (2011) Radar-based analysis of convective storms over Northwestern Italy. Atmosphere 3:33–58

    Article  Google Scholar 

  • Delrieu G, Serrar S, Guardo E, Creutin JD (1999) Rain measurement in hilly terrain with X-band weather radar systems: Accuracy of path-integrated attenuation estimates derived from mountain returns. J Atmos Ocean Technol 16:405–416. https://doi.org/10.1175/1520-0426(1999)016%3c0405:RMIHTW%3e2.0.CO;2

    Article  Google Scholar 

  • Dereczynski CP, Oliveira JSd, Machado CO (2009) Climatologia da precipitação no município do Rio de Janeiro. Rev Bras Meteorol 24(1):24–38. https://doi.org/10.1590/s0102-77862009000100003

    Article  Google Scholar 

  • Dhiram K, Wang Z (2014) Evaluation on radar reflectivity-rainfall rate (Z-R) relationships for Guyana. Atmos Clim Sci 6:489–499. https://doi.org/10.4236/acs.2016.64039

    Article  Google Scholar 

  • DRM (2016) Departamento de Recursos Minerais do estado do Rio de Janeiro. http://www.drm.rj.gov.br/index.php/downloads. Accessed 09 March 2018

  • Espinosa AM (2011) Previsão quantitativa por conjunto da precipitação do verão 2007/2008 na bacia de Rio Grande. Dissertation, Universidade de São Paulo.

  • Fabry F, Meunier V, Puigdomènech Treserras B, Cournoyer A, Nelson B (2017) On the climatological use of radar data mosaics: Possibilities and challenges. Bull Amer Meteor Soc 98:2135–2148. https://doi.org/10.1175/BAMS-D-15-00256.1

    Article  Google Scholar 

  • Ferreira NJ, Correia AA, Ramirez MCV (2004) Synoptic scale features of the tropospheric circulation over tropical South America during the WETAMC TRMM/LBA experiment. Atmosfera 17(1):13–30

    Google Scholar 

  • Fulton RA, Breidenbach JP, Seo DJ, Miller DA, O’Bannon T (1998) WSR-88D rainfall algorithm. Wea Forecasting 13:377–395

    Article  Google Scholar 

  • Gabella M, Perona G (1998) Simulation of the orographic influence on weather radar using geometric-optics approach. J Atmos Ocean Technol 15:1485–1494. https://doi.org/10.1175/1520-0426(1998)015%3c1485:SOTOIO%3e2.0.CO;2

    Article  Google Scholar 

  • Gonzales FCG (2014) Projeto de drenagem sustentável para mitigação de cheias na bacia do rio Quitandinha, em Petrópolis, RJ. Dissertation, Universidade Federal do Rio de Janeiro

  • Goudenhoofdt E, Delobbe L (2009) Evaluation of radar-gauge merging methods for quantitative precipitation estimates. Hydrol Earth Syst Sci 13:195–203

    Article  Google Scholar 

  • Goudenhoofdt E, Delobbe L (2012) Statistical characteristics of convective storms in Belgium derived from volumetric weather radar observations. J Appl Meteor Climatol 52:918–934. https://doi.org/10.1175/JAMC-D-12-079.1

    Article  Google Scholar 

  • Hagen M, Schiesser HH, Dorninger M (2000) Monitoring of mesoscale precipitation systems in the Alps and the northern Alpine foreland by radar and rain gauges. Meteor Atmos Phys 72:87–100. https://doi.org/10.1007/s007030050008

    Article  Google Scholar 

  • Henderson DS, Kummerow CD, Marks DA (2017) Sensitivity of rain rate estimates related to convective organization: observations from the Kwajalein, RMI, radar. J Appl Meteor Climatol 30(42):55

    Google Scholar 

  • Hunter S (1996) WSR-88D radar rainfall estimation: capabilities, limitations and potential improvements. Natl Weather Digest 20:26–38

    Google Scholar 

  • INEA (2016) Instituto Estadual do Ambiente. http://www.inea.rj.gov.br/Portal/index.htm. Accessed 02 May 2017

  • INMET (2016) Instituto Nacional de Meteorologia. http://www.inmet.gov.br/portal/. Accessed 09 March 2018

  • Jorgensen DP, Wills PT (1992) A Z-R relantionship for hurricanes. J Appl Meteorol 21:356–367

    Article  Google Scholar 

  • Joss J, Lee R (1995) The application of radar-gauge comparisons to operational precipitation profile corrections. J Appl Meteorol 34:2612–2630

    Article  Google Scholar 

  • Libertino A, Allamano P, Claps P, Cremonini R, Laio F (2015) Radar estimation of intense rainfall rates through adaptive calibration of the Z-R relation. Atmosphere 6:1559–1577

    Article  Google Scholar 

  • Liebmann B, Kiladis GN, Marengo JA, Ambrizzi T, Glick JD (1999) Submonthly convective variability over South America and the South Atlantic convergence zone. J Clim 12:1877–1891

    Article  Google Scholar 

  • Maki M, Keenan TD, Sasaki Y, Nakamura K (2001) Characteristics of the raindrop size distribution in tropical continental squall lines observed in Darwin, Australia. J Appl Meteor 40:1393–1412

    Article  Google Scholar 

  • Marshall JP, Palmer WM (1948) The distribution of raindrops with size. J Meteor 5:165–166

    Article  Google Scholar 

  • Moreau E, Testud J, Le Bouar E (2009) Rainfall spatial variability observed by X-band weather radar and its implication for the accuracy of rainfall estimates. Adv Water Resour 32:1011–1019. https://doi.org/10.1016/j.advwatres.2008.11.007

    Article  Google Scholar 

  • Nanding N, Rico-Ramirez MA, Han D (2015) Comparison of different radar-raingauge rainfall merging techniques. J Hydro 17:422–445

    Article  Google Scholar 

  • Nelson D, Brian R, Seo J, Kim D (2010) Multisensor precipitation reanalysis. J Hydrometeor 11:666–682

    Article  Google Scholar 

  • Oakley NS, Lancaster JT, Kaplan ML et al (2017) Synoptic conditions associated with cool season post-fire debris flows in the Transverse Ranges of southern California. Nat Hazards. https://doi.org/10.1007/s11069-017-2867-6

    Article  Google Scholar 

  • Parker MD, Johnson RH (2000) Organizational modes of midlatitude mesoscale convective systems. Mon Wea Rev 128:3413–3436. https://doi.org/10.1175/1520-0493(2001)129,3413:OMOMMC.2.0.CO;2

    Article  Google Scholar 

  • Qi YJZ, Zhang P (2013) A real-time automated convective and stratiform precipitation segregation algorithm in native radar coordinates. Q J R Meteor Soc. https://doi.org/10.1002/qj.2095

    Article  Google Scholar 

  • Ronsenfiled D, Wolf DB, Atlas D (1993) General probability matched relations between radar reflectivity and rain rate. J Appl Meteorol 32:50–72

    Article  Google Scholar 

  • Seluchi ME, Chou ESC (2009) Synoptic patterns associated with landslide events in the Serra do Mar. Brazil Theor Appl Clim 98:67–77

    Article  Google Scholar 

  • Silva FP, Rotunno FOC, Sampaio RJ, Dragaud ICV, Magalhães AAA, da Justi MGA, Pires GD (2017) Evaluation of atmospheric thermodynamics and dynamics during heavy-rainfall and no-rainfall events in the metropolitan area of Rio de Janeiro Brazil. Meteorol Atmos Phys. https://doi.org/10.1007/s00703-017-0570-5

    Article  Google Scholar 

  • Silva FP, Justi da Silva MGA, Rotunno Filho OC, Pires GD, Sampaio RJ, Magalhães AAA (2018) Synoptic thermodynamic and dynamic patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil). Meteorol Atmos Phys. https://doi.org/10.1007/s00703-018-0609-2

    Article  Google Scholar 

  • Silva FP, Rotunno Filho OC, Justi da Silva MGA, Sampaio RJ, Pires GD, Magalhães AAA (2019) Observed and estimated atmospheric thermodynamic instability using radiosonde observations over the city of Rio de Janeiro, Brazil. Meteorol Atmos Phys 132:297–314. https://doi.org/10.1007/s00703-019-00688-3

    Article  Google Scholar 

  • Silva FP, Rotunno Filho OC, Justi da Silva MGA, Sampaio RJ, Pires GD, Magalhães AAA (2020) Identification of rainfall and atmospheric patterns associated with Quitandinha River flooding events in Petropolis, Rio de Janeiro (Brazil). Nat Hazards 103:3745–3764. https://doi.org/10.1007/s11069-020-04153-y

    Article  Google Scholar 

  • Srivastava RC (1971) Size distribution of raindrops generated by their breakup and coalescence. J Atmos Sci 28:410–415

    Article  Google Scholar 

  • Steiner M, Houze RA, Yutter SE (1995) Climatological characterisation of three-dimensional storm strucure from operational radar and rain gaude data. J Appl Meteorol 34:1978–2007

    Article  Google Scholar 

  • Teixeira MS, Satyamurty P (2007) Dynamical and synoptic characteristics of heavy rainfall episodes in southern Brazil. Mon Wea Rev 135:598–617

    Article  Google Scholar 

  • Todini EA (2001) Bayesian technique for conditioning radar precipitation estimates to rain-gauge measurements. Hydrol Earth Syst Sci 5:187–199

    Article  Google Scholar 

  • Tokay A, Short DA (1996) Evidence from tropical raindrop spectra of the origin of rain from stratiform versus convective clouds. J Appl Meteor 35:355–371

    Article  Google Scholar 

  • Wang G, Liu L, Ding Y (2012) Improvement of radar quantitative precipitation estimation based on real-time adjustments to Z-R relationships and inverse distance weighting correction schemes. Adv Atmos Sci 29:575–584

    Article  Google Scholar 

  • Wilson JW, Brandes EA (1979) Radar measurement of rainfall: a summary. Bull Am Meteor Soc 60:1048–1058. https://doi.org/10.1175/15200477(1979)060%3c1048:RMORS%3e2.0.CO;2

    Article  Google Scholar 

  • Yang Y, Chen X, Qi Y (2013) Classification of convective/stratiform echoes in radar reflectivity observations using a fuzzy logic algorithm. J Geophys Res Atmos 118:1896–1905

    Article  Google Scholar 

  • Zawadszki I (1975) On radar-raingage comparison. J Appl Meteor 14:1430–1436

    Article  Google Scholar 

  • Zrnic D, Balakrishnan N (1990) Dependence of reflectivity factor—rainfall relationship on polarization. J Atmos Oceanic Technol 7:792–795

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to the Civil Engineering Program of the Alberto Luiz Coimbra Institute of Postgraduate Studies and Research in Engineering (COPPE), which is part of the Federal University of Rio de Janeiro (UFRJ), for the support offered, particularly through availability of the Water Resources and Environmental Studies Laboratory (LABH2O). The study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)–Finance Code 001, which also helped support this work through CAPES Call 27/2013-Pró-Equipamentos Institucional and CAPES/MEC Call No. 03/2015—BRICS. The authors are thankful to the National Council for Scientific and Technological Development (CNPq), which helped to fund this work through CNPq Universal Calls No. 14/2013–Proceeding No. 485136/2013-9; No. 28 /2018–Proceeding No. 435714/2018-0; and also by CNPq Call No. 12/2016–Proceeding No. 306944/2016-2 and CNPq Call No. 06/2019–Proceeding No. 303846/2019-4 . The authors are also grateful to the Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), which helped to fund this work through Project FAPERJ—Pensa Rio—Call 34/2014 (2014-2021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabricio Polifke da Silva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, F.P., Justi da Silva, M.G.A., Rotunno Filho, O.C. et al. Pattern evaluation of operational radar reflectivity–rainfall relationship for Quitandinha River flooding events: Petrópolis, Rio de Janeiro (Brazil). Environ Earth Sci 79, 525 (2020). https://doi.org/10.1007/s12665-020-09273-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12665-020-09273-z

Keywords

Navigation