Skip to main content
Log in

Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments

  • CRYSTALLOGRAPHIC SOFTWARE
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

A new approach to the organization of data pipelining in cryo-electron microscopy (Cryo-EM) and X-ray free-electron laser (XFEL) experiments is presented. This approach, based on the progress in information technologies (IT) due to the development of containerization techniques, allows one to separate user’s work at the application level from the developments of IT experts at the system and middleware levels. A user must only perform two simple operations: pack application packages in containers and write a workflow with data processing logic in a standard format. Some examples of containerized workflows for Cryo-EM and XFEL experiments on study of the spatial structure of single biological nanoobjects (viruses, macromolecules, etc.) are discussed. Examples of program codes for installing applied packages in Docker containers and examples of applied workflows written in the high-level language CWL are presented at the site of the project. The examples have comments, which may help an IT-inexperienced researcher to gain an idea of how to organize Docker containers and form CWL workflows for Cryo-EM and XFEL data pipelining.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. Callaway, Nature News 525 (7568), 172 (2015). https://doi.org/10.1038/525172a

    Article  ADS  Google Scholar 

  2. M. Altarelli and A. P. Mancuso, Philos. Trans. R. Soc. B 369 (1647), 20130311 (2014). https://doi.org/10.1098/rstb.2013.0311

    Article  Google Scholar 

  3. T. A. M. Bharat, C. J. Russo, J. Löwe, et al., Structure 23 (9), 1743 (2015). https://doi.org/10.1016/j.str.2015.06.026

    Article  Google Scholar 

  4. R. Neutze, R. Wouts, D. van der Spoel., et al., Nature 406 (6797), 752 (2000). https://doi.org/10.1038/35021099

    Article  ADS  Google Scholar 

  5. K. J. Gaffney and H. N. Chapman, Science 316 (5830), 1444 (2007). https://doi.org/10.1126/science.1135923

    Article  ADS  Google Scholar 

  6. A. Saxena, M. Sun, and A. Y. Ng, IEEE Trans. Pattern Anal. Mach. Intell. 31 (5), 824 (2008). https://doi.org/10.1109/TPAMI.2008.132

    Article  Google Scholar 

  7. D. J. Rezende, S. M. Ali, Eslami, S. Mohamed, et al., Advances in Neural Information Processing Systems (Curran Associates, 2016), p. 4996.

    Google Scholar 

  8. Y. LeCun and Y. Bengio, Convolutional Networks for Images, Speech, and Time-Series (MIT Press, 1998), p. 255.

    Google Scholar 

  9. A. Krizhevsky, I. Sutskever, and G. E. Hinton, Advances in Neural Information Processing Systems (Curran Associates, 2012), p. 1097.

  10. E. Pichkur, T. Baimukhametov, A. Teslyuk, et al., J. Phys.: Conf. Ser. 955, 012005 (2018). https://doi.org/10.1088/1742-6596/955/1/012005

    Article  Google Scholar 

  11. S. A. Bobkov, A. B. Teslyuk, S. I. Zolotarev, et al., Lobachevskii J. Math. 39 (9), 1170 (2018). https://doi.org/10.1134/S1995080218090093

    Article  MathSciNet  Google Scholar 

  12. D. Merkel, Linux J., No. 239, 2 (2014).

  13. https://kubernetes.io/

  14. I. Nadareishvili, R. Mitra, M. McLarty, et al., Microservice Architecture: Aligning Principles, Practices, and Culture (O’Reilly Media, 2016).

    Google Scholar 

  15. T. Šimko, L. Heinrich, H. Hirvonsalo, et al., EPJ Web Conf. EDP Sci. 214, 06034 (2019). https://doi.org/10.1051/epjconf/201921406034

    Article  Google Scholar 

  16. P. Amstutz, M. R. Crusoe, N. Tijanić, et al. Common Workflow Language working group. 2016. https://doi.org/10.6084/m9.figshare.3115156.v2

  17. C. Gatsogiannis and J. Markl, J. Mol. Biol. 385 (3), 963 (2009). https://doi.org/10.1016/j.jmb.2008.10.080

    Article  Google Scholar 

  18. A. Tesliuk, S. Bobkov, V. Ilyin, et al., 2019 Ivannikov ISPRAS Open Conference (ISPRAS).IEEE Xplore,2019, p. 67. https://doi.org/10.1109/ISPRAS47671.2019.00016

    Article  Google Scholar 

  19. T. N. Baimukhametov, Yu. M. Chesnokov, E. B. Pichkur, et al., Acta Nat. 10 (3), 48 (2018). https://doi.org/10.32607/20758251-2018-10-3-48-56

    Article  Google Scholar 

  20. Y. Cheng, Cell 161 (3), 450 (2015). https://doi.org/10.1016/j.cell.2015.03.049

    Article  Google Scholar 

  21. S. H. W. Scheres, J. Struct. Biol. 189 (2), 114 (2015). https://doi.org/10.1016/j.jsb.2014.11.010

    Article  ADS  Google Scholar 

  22. A. Punjani, J. L. Rubinstein, D. J. Fleet, et al., Nat. Methods 14 (3), 290 (2017). https://doi.org/10.1038/nmeth.4169

    Article  Google Scholar 

  23. J. Plitzko and W. P. Baumeister, Springer Handbook of Microscopy (Springer, Cham, 2019), p. 2-2.

    Google Scholar 

  24. https://www.ebi.ac.uk/pdbe/emdb/statistics_num_res.html/.

  25. E. Nwanochie and V. N. Uversky, Int. J. Mol. Sci. 20 (17), 4186 (2019). https://doi.org/10.3390/ijms20174186

    Article  Google Scholar 

  26. X. C. Bai, G. McMullan, and S. H. W. Scheres, Trends Biochem. Sci. 40 (1), 49 (2015). https://doi.org/10.1016/j.tibs.2014.10.005

    Article  Google Scholar 

  27. A. K. Mitra and M. van Raaij, Acta Crystallogr. F 75 (1), 1 (2019). https://doi.org/10.1107/S2053230X18017806

    Article  Google Scholar 

  28. D. B. Williams and C. B. Carter, Transmission Electron Microscopy (Springer, 2009). https://doi.org/10.1007/978-0-387-76501-3_10

    Book  Google Scholar 

  29. S. H. W. Scheres, M. Valle, R. Nuñez, et al., J. Mol. Biol. 348 (1), 139 (2005). https://doi.org/10.1016/j.jmb.2005.02.031

    Article  Google Scholar 

  30. D. N. Mastronarde, Microsc. Microanal. 24 (S1), 864 (2018). https://doi.org/10.1017/S1431927618004816

    Article  ADS  Google Scholar 

  31. S. Q. Zheng, E. Palovcak, J.-P. Armache, et al., Nat. Methods 14 (4), 331 (2017). https://doi.org/10.1038/nmeth.4193

    Article  Google Scholar 

  32. A. Rohou and N. Grigorieff, J. Struct. Biol. 192 (2), 216 (2015). https://doi.org/10.1016/j.jsb.2015.08.008

    Article  Google Scholar 

  33. K. Zhang, J. Struct. Biol. 193 (1), 1 (2016). https://doi.org/10.1016/j.jsb.2015.11.003

    Article  ADS  Google Scholar 

  34. K. Zhang, M. Li, and F. Sun, Gautomatch: An Efficient and Convenient gpu-Based Automatic Particle Selection Program. https://www.mrc-lmb.cam.ac.uk/kzhang/ 2011

  35. S. H. W. Scheres, J. Struct. Biol. 180 (3), 519 (2012). https://doi.org/10.1016/j.jsb.2012.09.006

    Article  Google Scholar 

  36. T. Grant, A. Rohou, and N. Grigorieff, Elife 7, e35383 (2018). https://doi.org/10.7554/eLife.35383

    Article  Google Scholar 

  37. P. Emma, R. Akre, A. R. Bionta, et al., Nat. Photonics. 4 (9), 641 (2010). https://doi.org/10.1038/nphoton.2010.176

    Article  ADS  Google Scholar 

  38. T. Ishikawa, H. Aoyagi, T. Asaka, et al., Nat. Photonics. 6 (8), 540 (2012). https://doi.org/10.1038/nphoton.2012.141

    Article  ADS  Google Scholar 

  39. M. M. Seibert, T. Ekeberg, F. R. N. C. Maia, et al., Nature 470 (7332), 78 (2011). https://doi.org/10.1038/nature09748

    Article  ADS  Google Scholar 

  40. M. F. Hantke, D. Haase, F. R. N. Maia, et al., Nat. Photonics. 8 (12), 943 (2014). https://doi.org/10.1038/nphoton.2014.270

    Article  ADS  Google Scholar 

  41. G. van der Schot, M. Svenda, F. R. N. C. Maia, et al., Nat. Commun. 6 (1), 1 (2015). https://doi.org/10.1038/ncomms6704

    Article  Google Scholar 

  42. T. Ekeberg, M. Svenda, C. Abergel, et al., Phys. Rev. Lett. 114 (9), 098102 (2015). https://doi.org/10.1103/PhysRevLett.114.098102

    Article  ADS  Google Scholar 

  43. A. Aquila, A. Barty, C. Bostedt, et al., Struct. Dyn. 2 (4), 041701 (2015).

    Article  Google Scholar 

  44. R. P. Kurta, J. J. Donatelli, C. H. Yoon, et al., Phys. Rev. Lett. 119 (15), 158102 (2017). https://doi.org/10.1103/PhysRevLett.119.158102

    Article  ADS  Google Scholar 

  45. M. Rose, S. Bobkov, K. Ayyer, et al., IUCrJ 5 (6), 727 (2018). https://doi.org/10.1107/S205225251801120X

    Article  Google Scholar 

  46. Y. Shi, K. Yin, X. Tai, et al., IUCrJ 6 (2), 331 (2019). https://doi.org/10.1107/S2052252519001854

    Article  Google Scholar 

  47. D. Assalauova, Y. Y. Kim, S. Bobkov, et al., IUCrJ. 7 (2020) (in press).

  48. E. Sobolev, S. Zolotarev, K. Giewekemeyer, et al., Commun. Phys. 3, Article number 97 (2020). https://doi.org/10.1038/s42005-020-0362-y

    Article  Google Scholar 

  49. https://linuxcontainers.org/lxc/introduction/.

  50. https://cri-o.io/.

  51. https://docs.docker.com/engine/reference/builder/.

  52. https://opencontainers.org/about/overview/.

  53. https://hub.docker.com/.

  54. https://docs.docker.com/get-started/swarm-deploy/.

  55. https://rancher.com/.

  56. https://bio1.grid.kiae.ru/sw/workflows/.

  57. J. Yu and R. Buyya, ACM Sigmod Record. 34 (3), 44 (2005). https://doi.org/10.1007/s10723-005-9010-8

    Article  Google Scholar 

  58. https://xpra.org/.

  59. T. Wagner, L. Lusnig, S. Pospich, et al., bioRxiv. 2020. https://doi.org/10.1101/2020.02.28.969196

  60. H. K. N. Reddy, C. H. Yoon, A. Aquila, et al., Sci. Data 4, 170079 (2017). https://doi.org/10.1038/sdata.2017.79

    Article  Google Scholar 

  61. J. D. Bozek, Eur. Phys. J. Spec. Top. 169 (1), 129 (2009). https://doi.org/10.1140/epjst/e2009-00982-y

    Article  Google Scholar 

  62. K. R. Ferguson, M. Bucher, J. D. Bozek, et al., J. Synchrotron Radiat. 22 (3), 492 (2015). https://doi.org/10.1107/S1600577515004646

    Article  Google Scholar 

  63. F. R. N. C. Maia, Nat. Methods 9 (9), 854 (2012). https://doi.org/10.1038/nmeth.2110

    Article  Google Scholar 

  64. K. Ayyer, T.-Y. Lan, V. Elser, et al., J. Appl. Crystallogr. 49 (4), 1320 (2016). https://doi.org/10.1107/S1600576716008165

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The study was performed using the computational resources supplied within project no. 1571 “Development of a digital platform for distributed storage, processing, and analyzing scientific data based on supercomputer and grid technologies” of the National Research Centre “Kurchatov Institute.”

Funding

The work on the development of a containerized platform for organizing data pipelining in SPA/SPI Cryo-EM and XFEL experiments was supported by the Russian Science Foundation (grant No. 18-41-06001) and the Helmholtz Associations Initiative Networking Fund (grant no. HRSF-0002).

The development and deployment of the infrastructure and program services at the system level for platform operation and data storage were performed according to the research and development plan of the National Research Centre “Kurchatov Institute.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bobkov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bobkov, S.A., Teslyuk, A.B., Baymukhametov, T.N. et al. Advances in Modern Information Technologies for Data Analysis in CRYO-EM and XFEL Experiments. Crystallogr. Rep. 65, 1081–1092 (2020). https://doi.org/10.1134/S1063774520060085

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520060085

Navigation