Skip to main content
Log in

Initiation and Suppression of the Portevin–Le Chatelier Effect in Aluminum Alloy under IR Laser Irradiation and Electric Current

  • REAL STRUCTURE OF CRYSTALS
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The separate and joint effect of IR laser irradiation and electric current on the Portevin–Le Chatelier effect and generation of deformation bands in aluminum–magnesium alloy AlMg6 has been investigated in situ by complex methods, including acoustic emission (AE) and high-speed video recording. The nucleation and evolution of the deformation bands initiated by pulsed laser radiation focused on the surface of deformed sample have been investigated with the time resolution up to 0.1 ms. The conditions under which a single laser “puncture” with a duration of up to ~1 ms initiates discontinuous deformation during several tens of seconds and reduces significantly (by a factor of 1.5) the critical strain of the onset of Portevin–Le Chatelier effect in AlMg6 alloy are revealed. It is established that transmission of low-density (below 40 А/mm2) direct electric current suppresses the negative influence of laser irradiation and completely stabilizes the deformation behavior of the alloy. Possible applications of the obtained results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Portevin and F. Le Chatelier, Seances Acad. Sci. 176, 507 (1923).

    Google Scholar 

  2. K. Chihab, Y. Estrin, L. P. Kubin, and J. Vergnol, J. Scr. Metall. 21, 203 (1987).

    Article  Google Scholar 

  3. Y. Estrin and L. P. Kubin, Continuum Models for Materials with Microstructure, Ed. by H.-B. Muhlhaus (Wiley, New-York, 1995), p. 395.

  4. A. J. Yilmaz, Sci. Technol. Adv. Mater. 12, 1 (2011).

    Article  Google Scholar 

  5. A. A. Shibkov, A. A. Denisov, M. A. Zheltov, et al., Mater. Sci. Eng. A 610, 338 (2014).

    Article  Google Scholar 

  6. A. A. Shibkov, A. A. Denisov, M. A. Zheltov, et al., Phys. Solid State 57 (6), 1060 (2015).

    Article  ADS  Google Scholar 

  7. A. A. Shibkov, A. E. Zolotov, M. A. Zheltov, et al., Crystallogr. Rep. 60 (6), 895 (2015).

    Article  ADS  Google Scholar 

  8. A. A. Shibkov, M. F. Gasanov, A. E. Zolotov, et al., Fiz. Tverd. Tela 61 (8), 1414 (2019) Phys. Solid State 61 (8), 1354 (2019).

    Article  ADS  Google Scholar 

  9. M. M. Krishtal and D. L. Merson, Fiz. Met. Metalloved. 81 (1), 155 (1996).

    Google Scholar 

  10. I. V. Shashkov, M. A. Lebyodkin, and T. A. Lebedkina, Acta Mater. 60, 6842 (2012).

    Article  Google Scholar 

  11. M. A. Lebyodkin, I. V. Shashkov, T. A. Lebedkina, and V. S. Gornakov, Phys. Rev. E 95, 032910 (2017).

    Article  ADS  Google Scholar 

  12. M. A. Lebyodkin, N. P. Kobelev, Y. Bougherira, et al., Acta Mater. 60, 3729 (2012).

    Article  Google Scholar 

  13. A. A. Shibkov, M. A. Zheltov, M. F. Gasanov, et al., Mater. Sci. Eng. A 772, 138777 (2020).

    Article  Google Scholar 

  14. A. A. Shibkov, M. F. Gasanov, A. E. Zolotov, et al., Crystallogr. Rep. 65 (4), 546 (2020).

    Article  ADS  Google Scholar 

  15. Y. Brechet and Y. Estrin, Acta Metal. Mater. 43 (3), 955 (1995).

    Article  Google Scholar 

  16. S. I. Baskakov, Radio-Engineering Circuits and Signals (Vysshaya Shkola, Moscow, 2000) [in Russian].

  17. A. Vinogradov and A. Lasarev, Scr. Mater. 66, 745 (2012).

    Article  Google Scholar 

  18. A. V. Lykov, Theory of Thermal Conductivity (Vysshaya Shkola, Moscow, 1967) [in Russian].

  19. A. A. Shibkov, M. A. Zheltov, P. Yu. Kol’tsov, et al., Izv. Ross. Akad. Nauk, Ser. Fiz. 70 (9), 1372 (2006).

    Google Scholar 

  20. J. F. Ready, Effects of High-Power Laser Radiation (Academic, New York, 1971).

    Google Scholar 

  21. H. Parkus, Instationare Warmespannungen (Springer, Wien, 1959).

    Book  Google Scholar 

  22. Yu. I. Golovin, A. V. Gorbunov, and A. A. Shibkov, Fiz. Tverd. Tela 30 (7), 1931 (1988).

    Google Scholar 

  23. M. Lebyodkin, L. Dunin-Barkowskii, Y. Brechet, et al., Acta Mater. 48, 2529 (2000).

    Article  Google Scholar 

  24. K. Chen, P. Bak, and S. P. Obukhov, Phys. Rev. A 43 (2), 625 (1991).

    Article  ADS  Google Scholar 

  25. H. Kanamori and E. Brodsky, Rep. Prog. Phys. 67, 1429 (2004).

    Article  ADS  Google Scholar 

Download references

Funding

The high-speed optical and acoustic studies were supported in part by the Russian Science Foundation (grant no. 18-19-00304), and the study of the influence of electric current on the dynamics of deformation bands initiated by laser irradiation was supported by the Russian Foundation for Basic Research (grant no. 19-38-90145 “Aspiranty”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Shibkov.

Additional information

Translated by Yu. Sin’kov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibkov, A.A., Zheltov, M.A., Gasanov, M.F. et al. Initiation and Suppression of the Portevin–Le Chatelier Effect in Aluminum Alloy under IR Laser Irradiation and Electric Current. Crystallogr. Rep. 65, 836–843 (2020). https://doi.org/10.1134/S1063774520060310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774520060310

Navigation