Skip to main content
Log in

Humic acid effects on retrotransposon polymorphisms caused by zinc and iron in the maize (Zea mays L.) genome

  • Original Paper
  • Published:
Cereal Research Communications Aims and scope Submit manuscript

Abstract

Long terminal repeat (LTR) retrotransposons are important pathways to examine various genome reorganizations based on environmental factors. The maize genome is one of the best representative examples. The aim of this study was to examine humic acid (HA) protective effects on genomic template stability (GTS) and LTR retrotransposon polymorphisms in corn seeds subjected to zinc (Zn) and iron (Fe) stress. In this study, maize seedlings were exposed to three doses (20, 40, and 60 mM) of ZnSO4·7H2O and FeSO4 and their combinations at 1500 ppm (0.075 g) HA. Inter-retrotransposon amplified polymorphism and retrotransposon-microsatellite amplified polymorphism techniques were used for genetic analyses. Results indicated that in all doses used, Zn and Fe increased retrotransposon polymorphisms and decreased the percentage of GTS via DNA damage. However, treatment of HA together with Zn and Fe resulted in decreased DNA damage and retrotransposon polymorphisms and increased GTS. These observations suggest that HA can be applied to reduce toxic effects in agricultural areas polluted with heavy metals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahmad M, Usman AR, Al-Faraj AS, Ahmad M, Sallam A, Al-Wabel MI (2018) Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants. Chemosphere 194:327–339

    CAS  PubMed  Google Scholar 

  • Aina R, Sgorbati S, Santagostino A, Labra M, Ghiani A, Citterio S (2004) Specific hypomethylation of DNA is induced by heavy metals in white clover and industrial hemp. Physiol Plant 121:472–480

    CAS  Google Scholar 

  • Anwaar SA et al (2015) Silicon (Si) alleviates cotton (Gossypium hirsutum L.) from zinc (Zn) toxicity stress by limiting Zn uptake and oxidative damage. Environ Sci Pollut Res 22:3441–3450

    CAS  Google Scholar 

  • Baumel A, Ainouche M, Kalendar R, Schulman AH (2002) Retrotransposons and genomic stability in populations of the young allopolyploid species Spartina anglica CE Hubbard (Poaceae). Mol Biol Evol 19:1218–1227

    CAS  PubMed  Google Scholar 

  • Blokhina O, Virolainen E, Fagerstedt KV (2003) Antioxidants, oxidative damage and oxygen deprivation stress: a review. Ann Bot 91:179–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bray E, Bailey-Serres J, Weretilnyk E (2000) Biochemistry and molecular biology of plants. Rockv Am Soc Plant Physiol 290:1158–1203

    Google Scholar 

  • Britton RS, Leicester KL, Bacon BR (2002) Iron toxicity and chelation therapy. Int J Hematol 76:219–228. https://doi.org/10.1007/bf02982791

    Article  CAS  PubMed  Google Scholar 

  • Caliskan-Can E, Miser-Salihoglu E, Atalay C, Yalcintas-Arslan U, Simsek B, Yardim-Akaydin S (2010) DNA damage and lipid peroxidation in several types of cancer. Fabad J Pharm Sci 35:125–132

    Google Scholar 

  • Cansaran-Duman D, Atakol O, Aras S (2011) Assessment of air pollution genotoxicity by RAPD in Evernia prunastri L. Ach from around iron-steel factory in Karabük, Turkey. J Environ Sci 23:1171–1178

    CAS  Google Scholar 

  • Carvalho A, Guedes-Pinto H, Lima-Brito JE (2012) Genetic diversity in old Portuguese durum wheat cultivars assessed by retrotransposon-based markers. Plant Mol Biol Rep 30:578–589

    Google Scholar 

  • Chan SW-L, Henderson IR, Jacobsen SE (2005) Gardening the genome: DNA methylation in Arabidopsis thaliana. Nat Rev Genet 6:351

    CAS  PubMed  Google Scholar 

  • Concheri G, Nardi S, Piccolo A, Rascio N, Dell’Agnola G (1994) Effects of humic fractions on morphological changes related to invertase and peroxidase activities in wheat seedlings. In: Senesi N, Miano TM (eds) Humic substances in the global environment and implications on human health. Elsevier Sci, Amsterdam, pp 257–262

    Google Scholar 

  • de Oliveira JG, Cambraia J, Ribeiro C, de Oliveira JA, de Paula SO, Oliva MA (2013) Impact of iron toxicity on oxidative metabolism in young Eugenia uniflora L. plants. Acta Physiol Plant 35:1645–1657

    CAS  Google Scholar 

  • Doskočil L, Grasset L, Válková D, Pekař M (2014) Hydrogen peroxide oxidation of humic acids and lignite. Fuel 134:406–413

    Google Scholar 

  • Erturk FA, Nardemir G, Hilal A, Arslan E, Agar G (2015) Determination of genotoxic effects of boron and zinc on Zea mays using protein and random amplification of polymorphic DNA analyses. Toxicol Ind Health 31:1015–1023

    CAS  PubMed  Google Scholar 

  • Feng SJ et al (2016) Variation of DNA methylation patterns associated with gene expression in rice (Oryza sativa) exposed to cadmium. Plant Cell Environ 39:2629–2649

    CAS  PubMed  Google Scholar 

  • Finatto T et al (2015) Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. Rice 8:13

    PubMed  PubMed Central  Google Scholar 

  • Grandbastien M-A et al (2005) Stress activation and genomic impact of Tnt1 retrotransposons in Solanaceae. Cytogenet Genome Res 110:229–241

    CAS  PubMed  Google Scholar 

  • Greco M, Sáez CA, Contreras RA, Rodríguez-Rojas F, Bitonti MB, Brown MT (2019) Cadmium and/or copper excess induce interdependent metal accumulation, DNA methylation, induction of metal chelators and antioxidant defences in the seagrass. Zostera Marina Chemosphere 224:111–119

    CAS  PubMed  Google Scholar 

  • Guan D-L, Ding R-R, Hu X-Y, Yang X-R, Xu S-Q, Gu W, Zhang M (2019) Cadmium-induced genome-wide DNA methylation changes in growth and oxidative metabolism in Drosophila melanogaster. BMC Genom 20:356

    Google Scholar 

  • Gülser E, Tüfenkçi Ş, Demir S (2014) Domateste potasyum, salisilik asit ve humik asit uygulamalarının fide çıkışı ve Fusarium solgunluğuna (Fusarium oxysporum f. sp. lycopersici) etkileri. YYÜ Tarım Bilimleri Dergisi 24:16–22

    Google Scholar 

  • Han D, Hou Y, Liu W, Zhang Z, Ding H, Li H, Yang G (2018) Isolation and functional analysis of MdNAS1, with functions in improved iron stress tolerance and abnormal flower in transgenic tobacco. J Plant Interact 13:213–220

    CAS  Google Scholar 

  • Hirochika H, Sugimoto K, Otsuki Y, Tsugawa H, Kanda M (1996) Retrotransposons of rice involved in mutations induced by tissue culture. Proc Natl Acad Sci 93:7783–7788

    CAS  PubMed  Google Scholar 

  • Högberg J, Kristoferson A (1977) A correlation between glutathione levels and cellular damage in isolated hepatocytes. Eur J Biochem 74:77–82

    PubMed  Google Scholar 

  • Hu Z, Wenjiao Z (2015) Effects of zinc stress on growth and antioxidant enzyme responses of Kandelia obovata seedlings. Toxicol Environ Chem 97:1190–1201

    Google Scholar 

  • Israr M, Jewell A, Kumar D, Sahi SV (2011) Interactive effects of lead, copper, nickel and zinc on growth, metal uptake and antioxidative metabolism of Sesbania drummondii. J Hazard Mater 186:1520–1526

    CAS  PubMed  Google Scholar 

  • Kalendar R, Grob T, Regina M, Suoniemi A, Schulman A (1999) IRAP and REMAP: two new retrotransposon-based DNA fingerprinting techniques. Theor Appl Genet 98:704–711

    CAS  Google Scholar 

  • Kennedy C, Gonsalves F (1987) The action of divalent zinc, cadmium, mercury, copper and lead on the trans-root potential and H+, efflux of excised roots. J Exp Bot 38:800–817

    CAS  Google Scholar 

  • Koukal B, Gueguen C, Pardos M, Dominik J (2003) Influence of humic substances on the toxic effects of cadmium and zinc to the green alga Pseudokirchneriella subcapitata. Chemosphere 53:953–961

    CAS  PubMed  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Ann Rev Genet 33:479–532

    CAS  PubMed  Google Scholar 

  • López-Moreno ML, de la Rosa G, Hernández-Viezcas JÁ, Castillo-Michel H, Botez CE, Peralta-Videa JR, Gardea-Torresdey JL (2010) Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environ Sci Technol 44:7315–7320

    PubMed  PubMed Central  Google Scholar 

  • Lu P-L et al (2007) A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol Biol 63:289–305

    CAS  PubMed  Google Scholar 

  • Mager S, Schönberger B, Ludewig U (2018) The transcriptome of zinc deficient maize roots and its relationship to DNA methylation loss. BMC Plant Biol 18:372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mallick S, Sinam G, Mishra RK, Sinha S (2010) Interactive effects of Cr and Fe treatments on plants growth, nutrition and oxidative status in Zea mays L. Ecotoxicol Environ Saf 73:987–995

    CAS  PubMed  Google Scholar 

  • Marova I, Kucerik J, Duronova K, Mikulcova A, Vlckova Z (2011) Antimutagenic and/or genotoxic effects of processed humic acids as tested upon S. cerevisiae D7. Environ Chem Lett 9:229–233

    CAS  Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth T (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nanda R, Agrawal V (2016) Elucidation of zinc and copper induced oxidative stress, DNA damage and activation of defence system during seed germination in Cassia angustifolia Vahl. Environ Exp Bot 125:31–41

    CAS  Google Scholar 

  • Poczai P, Varga I, Bell NE, Hyvönen J (2012) Genomics meets biodiversity: advances in molecular marker development and their applications in plant genetic diversity assessment. Mol Basis Plant Genet Divers

  • Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JP, Hyvonen J (2013) Advances in plant gene-targeted and functional markers: a review. Plant Methods 9:6. https://doi.org/10.1186/1746-4811-9-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schutzendubel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365

    CAS  PubMed  Google Scholar 

  • Sergiev I et al (2013) Protective effect of humic acids against heavy metal stress in triticale. Compt Rend Acad Bulg Sci 66:53–60

    CAS  Google Scholar 

  • Shah ZH et al (2018) Humic substances: determining potential molecular regulatory processes in plants. Front Plant Sci 9:263

    PubMed  PubMed Central  Google Scholar 

  • Sharif R, Thomas P, Zalewski P, Fenech M (2012) The role of zinc in genomic stability. Mutat Res 733:111–121. https://doi.org/10.1016/j.mrfmmm.2011.08.009

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Anderson D, Dhawan A (2012) Zinc oxide nanoparticles induce oxidative DNA damage and ROS-triggered mitochondria mediated apoptosis in human liver cells (HepG2). Apoptosis 17:852–870. https://doi.org/10.1007/s10495-012-0705-6

    Article  CAS  PubMed  Google Scholar 

  • Shehata MM, Fahmy EM, Mohamed Badawy F, Mostafa Kamal Sayed L (2019) Measuring of the alteration of retrotransposition in the response of salinity stress using IRAP and SCoT markers Arab Universities. J Agric Sci 27:2601–2609

    Google Scholar 

  • Shi WG, Li H, Liu TX, Polle A, Peng CH, Luo ZB (2015) Exogenous abscisic acid alleviates zinc uptake and accumulation in Populus× canescens exposed to excess zinc. Plant Cell Environ 38:207–223

    CAS  PubMed  Google Scholar 

  • Sigmaz B, Agar G, Arslan E, Aydin M, Taspinar MS (2015) The role of putrescine against the long terminal repeat (LTR) retrotransposon polymorphisms induced by salinity stress in Triticum aestivum. Acta Physiol Plant 37:251

    Google Scholar 

  • Syed R, Kapoor D, Bhat AA (2018) Heavy metal toxicity in plants: a review. Plant Arch 18:1229–1238

    Google Scholar 

  • Taspinar MS, Aydin M, Sigmaz B, Yildirim N, Agar G (2017) Protective role of humic acids against picloram-induced genomic instability and DNA methylation in Phaseolus vulgaris. Environ Sci Pollut Res Int 24:22948–22953. https://doi.org/10.1007/s11356-017-9936-y

    Article  CAS  PubMed  Google Scholar 

  • Taspinar MS, Aydin M, Sigmaz B, Yagci S, Arslan E, Agar G (2018) Aluminum-induced changes on DNA damage, DNA methylation and LTR retrotransposon polymorphism in maize. Arabian J Sci Eng 43:123–131

    CAS  Google Scholar 

  • Waisberg M, Joseph P, Hale B, Beyersmann D (2003) Molecular and cellular mechanisms of cadmium carcinogenesis. Toxicology 192:95–117. https://doi.org/10.1016/s0300-483x(03)00305-6

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14. https://doi.org/10.1007/s00425-003-1105-5

    Article  CAS  PubMed  Google Scholar 

  • Xie H, Holmes AL, Wise SS, Gordon N, Wise JP (2004) Lead chromate-induced chromosome damage requires extracellular dissolution to liberate chromium ions but does not require particle internalization or intracellular dissolution. Chem Res Toxicol 17:1362–1367

    CAS  PubMed  Google Scholar 

  • Xin C, Chi J, Zhao Y, He Y, Guo J (2019) Cadmium stress alters cytosine methylation status and expression of a select set of genes in Nicotiana benthamiana. Plant Sci 284:16–24

    CAS  PubMed  Google Scholar 

  • Yigider E, Taspinar MS, Sigmaz B, Aydin M, Agar G (2016) Humic acids protective activity against manganese induced LTR (long terminal repeat) retrotransposon polymorphism and genomic instability effects in Zea mays. Plant Gene 6:13–17

    CAS  Google Scholar 

  • Yildirim N, Agar G, Taspinar MS, Turan M, Aydin M, Arslan E (2014) Protective role of humic acids against dicamba-induced genotoxicity and DNA methylation in Phaseolus vulgaris L. Acta Agric Scand B Soil Plant Sci 64:141–148

    CAS  Google Scholar 

  • Zhang X et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126:1189–1201

    CAS  PubMed  Google Scholar 

  • Zhang F-Q, Wang Y-S, Lou Z-P, Dong J-D (2007) Effect of heavy metal stress on antioxidative enzymes and lipid peroxidation in leaves and roots of two mangrove plant seedlings (Kandelia candel and Bruguiera gymnorrhiza). Chemosphere 67:44–50

    CAS  PubMed  Google Scholar 

  • Zhang J, Ni Y, Ding T, Zhang C (2014) The role of humic acid in the toxicity of arsenite to the diatom Navicula sp. Environ Sci Pollut Res 21:4366–4375

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmut Sinan Taspinar.

Ethics declarations

Conflict of interest

The corresponding author states that there is no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yigider, E., Taspinar, M., Aydin, M. et al. Humic acid effects on retrotransposon polymorphisms caused by zinc and iron in the maize (Zea mays L.) genome. CEREAL RESEARCH COMMUNICATIONS 49, 193–198 (2021). https://doi.org/10.1007/s42976-020-00111-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42976-020-00111-3

Keywords

Navigation