Skip to main content
Log in

Compact stars with variable cosmological constant in \(f(\mathcal{R,T})\) gravity

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

This paper explores and analyzes a set of solutions describing the interior structure of relativistic compact stellar structures with variable cosmological constant \(\Lambda (r)\). We consider the solution of Krori–Barua space-time to a static spherical symmetric metric. Furthermore, we match our interior stellar structure with the exterior Schwarzschild geometry to determine the values of the constants used in the solution of the Krori–Barua space-time. The numerical values of these constants were determined for a set of different compact stars, and using these constants in our solutions, we have studied the viability of matter content, stability, TOV equations, and surface red-shift; and we predicted some physical aspects like central and surface densities, stresses, masses, and radii.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Ahmed, N., Alamri, S.Z.: A stable flat universe with variable cosmological constant in \(f {(R, T)}\) gravity. Res. Astron. Astrophys. 18(10), 123 (2018)

    Article  ADS  Google Scholar 

  • Bonanno, A., Carloni, S.: Dynamical system analysis of cosmologies with running cosmological constant from quantum Einstein gravity. New J. Phys. 14(2), 025008 (2012)

    Article  ADS  MATH  Google Scholar 

  • Buchdahl, H.A.: General relativistic fluid spheres. Phys. Rev. 116(4), 1027 (1959)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Capozziello, S., Lobo, F.S., Mimoso, J.P.: Energy conditions in modified gravity. Phys. Lett. B 730, 280–283 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Capozziello, S., Lobo, F.S., Mimoso, J.P.: Generalized energy conditions in extended theories of gravity. Phys. Rev. D 91(12), 124019 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Chodos, A., Jaffe, R., Johnson, K., Thorn, C.B., Weisskopf, V.: New extended model of hadrons. Phys. Rev. D 9(12), 3471 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  • Demorest, P.B., Pennucci, T., Ransom, S., Roberts, M., Hessels, J.: A two-solar-mass neutron star measured using Shapiro delay. Nature 467(7319), 1081–1083 (2010)

    Article  ADS  Google Scholar 

  • Gangopadhyay, T., Ray, S., Li, X.-D., Dey, J., Dey, M.: Strange star equation of state fits the refined mass measurement of 12 pulsars and predicts their radii. Mon. Not. R. Astron. Soc. 431(4), 3216–3221 (2013)

    Article  ADS  Google Scholar 

  • Güver, T., Özel, F., Cabrera-Lavers, A., Wroblewski, P.: The distance, mass, and radius of the neutron star in 4u 1608–52. Astrophys. J. 712(2), 964 (2010a)

    Article  ADS  Google Scholar 

  • Güver, T., Wroblewski, P., Camarota, L., Özel, F.: The mass and radius of the neutron star in 4u 1820–30. Astrophys. J. 719(2), 1807 (2010b)

    Article  ADS  Google Scholar 

  • Harko, T., Lobo, F.S., Nojiri, S., Odintsov, S.D.: \(f (r, t)\) gravity. Phys. Rev. D 84(2), 024020 (2011)

    Article  ADS  Google Scholar 

  • Herrera, L.: Cracking of self-gravitating compact objects. Phys. Lett. A 165(3), 206–210 (1992)

    Article  ADS  Google Scholar 

  • Ilyas, M.: Charged compact stars in \(f{(\mathcal{G})}\) gravity. Eur. Phys. J. C 78(9), 757 (2018a)

    Article  ADS  Google Scholar 

  • Ilyas, M.: Some Cosmological Aspects of Celestial Objects in Modified Gravity. PhD thesis, University of the Punjab, Lahore (2018b)

  • Ilyas, M.: Energy conditions in non-local gravity. Int. J. Geom. Methods Mod. Phys. 16(10), 1950149 (2019)

    Article  MathSciNet  Google Scholar 

  • Ilyas, M., Yousaf, Z., Bhatti, M., Masud, B.: Existence of relativistic structures in \(f{(R,T)}\) gravity. Astrophys. Space Sci. 362(12), 237 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Kalam, M., Rahaman, F., Ray, S., Hossein, S.M., Karar, I., Naskar, J.: Anisotropic strange star with de Sitter spacetime. Eur. Phys. J. C 72(12), 2248 (2012)

    Article  ADS  Google Scholar 

  • Krori, K., Barua, J.: A singularity-free solution for a charged fluid sphere in general relativity. J. Phys. A, Math. Gen. 8(4), 508 (1975)

    Article  ADS  MATH  Google Scholar 

  • Li, X.-D., Bombaci, I., Dey, M., Dey, J., Van Den Heuvel, E.: Is sax j1808. 4-3658 a strange star? Phys. Rev. Lett. 83(19), 3776 (1999a)

    Article  ADS  Google Scholar 

  • Li, X.-D., Ray, S., Dey, J., Dey, M., Bombaci, I.: On the nature of the compact star in 4u 1728–34. Astrophys. J. Lett. 527(1), L51 (1999b)

    Article  ADS  Google Scholar 

  • Mak, M., Harko, T.: Anisotropic stars in general relativity. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 459(2030), 393–408 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Mak, M., Dobson, P.N. Jr., Harkó, T.: Exact models for anisotropic relativistic stars. Int. J. Mod. Phys. D 11(02), 207–221 (2002)

    Article  ADS  Google Scholar 

  • Mavromatos, N.E.: Supersymmetry, cosmological constant and inflation: towards a fundamental cosmic picture via “running vacuum”. EPJ Web Conf. 126, 02020. (2016). EDP Sciences

    Article  Google Scholar 

  • Özel, F., Güver, T., Psaltis, D.: The mass and radius of the neutron star in exo 1745–248. Astrophys. J. 693(2), 1775 (2009)

    Article  ADS  Google Scholar 

  • Perlmutter, S., Aldering, G., Della Valle, M., Deustua, S., Ellis, R., Fabbro, S., Fruchter, A., Goldhaber, G., Groom, D., Hook, I., et al.: Discovery of a supernova explosion at half the age of the universe. Nature 391(6662), 51–54 (1998)

    Article  ADS  Google Scholar 

  • Riess, A.G., Strolger, L.-G., Tonry, J., Casertano, S., Ferguson, H.C., Mobasher, B., Challis, P., Filippenko, A.V., Jha, S., Li, W., et al.: Type Ia supernova discoveries at \(z > 1\) from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607(2), 665 (2004)

    Article  ADS  MATH  Google Scholar 

  • Shabani, H., Ziaie, A.H.: Consequences of energy conservation violation: Late time solutions of \(\lambda {(T)} \mathit{cdm} \) subclass of \(f {(R, T)} \) gravity using dynamical system approach (2017). ArXiv preprint, arXiv:1702.07380

  • Shapiro, I.L., Sola, J.: On the possible running of the cosmological “constant”. Phys. Lett. B 682(1), 105–113 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  • Socorro, J., D’oleire, M., Pimentel, L.O.: Variable cosmological term \(\lambda (t) \). Astrophys. Space Sci. 360(1), 20 (2015)

    Article  ADS  Google Scholar 

  • Stachowski, A., Szydłowski, M.: Dynamical system approach to running \(\lambda \) cosmological models. Eur. Phys. J. C 76(11), 606 (2016)

    Article  ADS  Google Scholar 

  • Usov, V.V.: Electric fields at the quark surface of strange stars in the color-flavor locked phase. Phys. Rev. D 70(6), 067301 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported financially by Start-Up Research Grant Program (SRGP), Higher Education Commission, Pakistan under research project No. 2681.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ilyas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilyas, M. Compact stars with variable cosmological constant in \(f(\mathcal{R,T})\) gravity. Astrophys Space Sci 365, 180 (2020). https://doi.org/10.1007/s10509-020-03888-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03888-1

Keywords

Navigation