Skip to main content
Log in

Weighted Association Rule Mining Over Unweighted Databases Using Inter-Item Link Based Automated Weighting Scheme

  • Research Article-Computer Engineering and Computer Science
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Weighted association rule mining is an effective approach in discovering hidden relationships among the important items in a transactional database. Weight of an item reflects its importance in the database. However, most of the traditional methods are suitable for weighted item transaction databases (WITDs) where the item weights are available. In case of the unweighted item transaction databases (UWITDs), these methods remain ineffective. Item weights are not available in the UWITDs, and hence, the task of weight assignment has become one of the prime issues in this respect. This paper presents an automated weight assignment scheme for the items in an UWITD using the inter-item links. Unlike the existing approaches, the proposed scheme considers the indirect links in addition to the direct links among the items. Indirect links adjust the weights of the items, which in later help in mining large itemsets with low supports. We propose a link-based weighted association rule mining approach over the UWITD. The proposed approach includes two new objective measures such as linkage weighted support and linkage weighted confidence for mining the frequent weighted itemsets (FWIs) and the weighted association rules (WARs), respectively. The comprehensive experiments on both of the synthetic and real-world datasets show the effectiveness of the proposed approach in terms of number of FWIs and WARs, runtime, memory usage, weight distribution, scalability and dissociation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27

Similar content being viewed by others

References

  1. Agarwal, R.; Imielinski, T.; Swami, A.: Mining association rules between sets of items in large datasets. In: Proceedings of the ACM SIGMOD’93, pp. 207–216. (1993)

  2. Agarwal, R.; Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the VLDB’94, pp. 487–499. (1994)

  3. Feng, F.; Cho, J.; Pedrycz, W.; Fujita, H.; Herawan, T.: Soft set based association rule mining. Knowl. Based Syst. 111, 268–282, 2016

    Article  Google Scholar 

  4. Nguyen, L.T.T.; Vo, B.; Nguyen, L.T.T.; Fournier-Viger, P.; Selamat, A.: ETARM: an efficient top-k association rule mining algorithm. Appl. Intell. 48, 1148–1160, 2018

    Article  Google Scholar 

  5. Ghafari, S.M.; Tjortjis, C.: A survey on association rule mining using heuristics. WIREs Data Min. Knowl. Discov. 9(4), e1307, 2019

    Google Scholar 

  6. Pandian, A.; Thaveethu, J.: SOTARM: size of transaction based association rule mining algorithm. Turk. J. Electr. Eng. Comput. Sci. 25, 278–291, 2017

    Article  Google Scholar 

  7. Moodley, R.; Chiclana, F.; Caraffini, F.; Carter, J.: Applications of uninorms to market basket analysis. Int. J. Intell. Syst. 34, 39–49, 2019

    Article  Google Scholar 

  8. Altaf, W.; Shahbaz, M.; Guergachi, A.: Applications of association rule mining in health informatics: a survey. Artif. Intell. Rev. 47, 313–340, 2017

    Article  Google Scholar 

  9. Suchacka, G.; Chodak, G.: Using association rules to assess purchase probability in online stores. IseB 15, 751–780, 2017

    Article  Google Scholar 

  10. Al-badwi, A.; Long, Z.; Zhang, Z.; Al-habib, M.; Al-sabahi, K.: A novel integrated approach for companion vehicle discovery based on frequent itemset mining on spark. Arab. J. Sci. Eng. 44, 9517–9527, 2019

    Article  Google Scholar 

  11. Shao, Y.; Liu, B.; Wang, S.; Li, G.: A novel software defect prediction based on atomic class-association rule mining. Expert Syst. Appl. 114, 237–254, 2018

    Article  Google Scholar 

  12. Zhang, Z.; Huang, J.; Hao, J.; Gong, J.; Chen, H.: Extracting relations of crime rates through fuzzy association rules mining. Appl. Intell. 50, 448–467, 2020

    Article  Google Scholar 

  13. Ramkumar, G.D.; Ranka, S.; Tsur, S.: Weighted association rules: model and algorithm. In: Proceedings of the ACM SIGKDD. (1998)

  14. Cai, C.H.; Fu, A.W.C.; Cheng, C.H.; Kwong, W.W.: Mining association rules with weighted items. In: Proceedings of the IEEE IDEAS’98, pp. 68–77. (1998)

  15. Nguyen, H.; Vo, B.; Nguyen, M.; Pedrycz, W.: An efficient algorithm for mining frequent weighted itensets using interval word segments. Appl. Intell. 45, 1008–1020, 2016

    Article  Google Scholar 

  16. Nam, H.; Yun, U.; Yoon, E.; Lin, J.C.W.: Efficient approach for incremental weighted erasable pattern mining with list structure. Expert Syst. Appl. 143(1), 113087, 2020

    Article  Google Scholar 

  17. Vo, B.; Bui, H.; Vo, T.; Le, T.: Mining top-rank-k frequent weighted itemsets using WN-list structures and an early pruning strategy. Knowl. Based Syst. 201–202, Art. no. 106064 (2020)

  18. Kiran, R.U.; Reddy, P.P.C.; Zettsu, K.; Toyoda, M.; Kitsuregawa, M.; Reddy, P.K.: Efficient discovery of weighted frequent neighborhood itemsets in very large spatiotemporal databases. IEEE Access 8, 27584–27596, 2020

    Article  Google Scholar 

  19. Huynh, H.M.; Nguyen, L.T.T.; Vo, B.; Nguyen, A.; Tseng, V.S.: Efficient methods for mining weighted clickstream patterns. Expert Syst. Appl. 142, Art. no. 112993 (2020)

  20. Tao, F.; Murtagh, F.; Farid, M.: Weighted association rule mining using weighted support and significance framework. In: Proceedings of the ACM SIGKDD’03, pp. 661–666. (2003)

  21. Khan, M.S.; Muyeba, M.; Coenen, F.: A weighted utility framework for mining association rules. In: Proceedings of the 2nd UKSIM’08, pp. 87–92. (2008)

  22. Yan, L.; Li, C.: Incorporating pageview weight into an association-rule-based web recommendation system. In: A. Sattar et al. (eds.) AI’06, LNAI 4304, pp. 577–586. (2006)

  23. Gan, W.; Lin, J.C.W.; Fournier-Viger, P.; Chao, H.C.; Zhan, J.; Zhang, J.: Exploiting high qualified pattern with frequency and weight occupancy. Knowl. Inf. Syst. 56(1), 165–196, 2018

    Article  Google Scholar 

  24. Lin, J.C.W.; Gan, W.; Fournier-Viger, P.; Hong, T.P.: RWFIM: recent weighted frequent itemsets mining. Eng. Appl. Artif. Intell. 45, 18–35, 2015

    Article  Google Scholar 

  25. Lakshmi, K.S.; Vadivu, G.: A novel approach for disease comorbidity prediction using weighted association rule mining. J. Ambient Intell. Humaniz. Comput., 2019. https://doi.org/10.1007/s12652-019-01217-1.

    Article  Google Scholar 

  26. Soni, S.; Vyas, O.P.: Building weighted associative classifiers using maximum likelihood estimation to improve prediction accuracy in health care data mining. J. Inf. Knowl. Manag. 12(1), 1350008, 2013

    Article  Google Scholar 

  27. He, Y.; Zhu, C.; He, Z.; Gu, C.; Cui, C.: Big data oriented root cause identification approach based on Axiomatic domain mapping and weighted association rule mining for product infant failure. Comput. Ind. Eng. 109, 253–265, 2017

    Article  Google Scholar 

  28. Duan, P.; He, Z.; He, Y.; Liu, F.; Zhang, A.; Zhou, D.: Root cause analysis approach based on reverse cascading decomposition in QFD and fuzzy weight ARM for quality accidents. Comput. Ind. Eng. 147, 106643, 2020

    Article  Google Scholar 

  29. Kang, X.; Porter, C.S.; Bohemia, E.: Using the fuzzy weighted association rule mining approach to develop a customer satisfaction product form. J. Intell. Fuzzy Syst. 38, 4343–4357, 2020

    Article  Google Scholar 

  30. Sumathi, G.; Akilandeswari, J.: Improved fuzzy weighted-iterative association rule based ontology postprocessing in data mining for query recommendation applications. Comput. Intell. 36(2), 773–782, 2020

    Article  Google Scholar 

  31. Koh, Y.S.; Pears, R.; Dobbie, G.: Automatic item weight generation for pattern mining and its application. Int. J. Data Wareh. Min. 7(3), 30–49, 2011

    Article  Google Scholar 

  32. Koh, Y.S.; Pears, R.; Yeap, W.: Valency based weighted association rule mining. In: Zaki, M.J., et al. (eds.) PAKDD’10, Part I, LNAI 6118, pp. 274–285. Springer, Heidelberg (2010)

    Google Scholar 

  33. Pears, R.; Koh, Y.S.; Dobbie, G.; Yeap, W.: Weighted association rule mining via a graph based connectivity model. Inf. Sci. 218, 61–84, 2013

    Article  MathSciNet  Google Scholar 

  34. Sun, K.; Bai, F.: Mining weighted association rules without preassigned weights. IEEE TKDE 20(4), 489–495, 2008

    Google Scholar 

  35. Koh, Y.S.; Pears, R.; Dobbie, G.: WeightTransmitter: weighted association rule mining using landmark weights. In: P. Tan et al. (eds.): PAKDD’12, Part II, LNAI 7302, pp. 37–48. (2012)

  36. Pears, R.; Pisalpanus, S.; Koh, Y.S.: A graph based approach to inferring item weights for pattern mining. Expert Syst. Appl. 42, 451–461, 2015

    Article  Google Scholar 

  37. Wu, J.M.T.; Zhan, J.; Chobe, S.: Mining association rules for low-frequency itemsets. PLoS ONE 13(7), e0198066, 2018

    Article  Google Scholar 

  38. Pal, S.; Bagchi, A.: Association against dissociation: some pragmatic consideration for frequent itemset generation under fixed and variable thresholds. SIGKDD Explor. 7(2), 151–159, 2005

    Article  Google Scholar 

  39. Datta, S.; Bose, S.: Mining and ranking association rules in support, confidence, correlation and dissociation framework. In S. Das et al. (eds.) FICTA’15, AISC, vol. 404, pp. 141–152. (2015)

  40. Yu, P.; Wild, D.J.: Discovering associations in biomedical datasets by link-based associative classifier (LAC). PLoS ONE 7(12), e51018, 2012

    Article  Google Scholar 

  41. Rusinowska, A.; Berghammer, R.; Swart, H.D.; Grabisch, M.: Social networks: prestige, centrality and influence. In: H. de Swart (eds.) RAMICS’11, LNCS 6663, pp. 22–39. (2011)

  42. Qiao, T.; Shan, W.; Zhou, C.: How to identify the most powerful node in complex networks? A novel entropy centrality approach. Entropy 19, 614, 2017

    Article  Google Scholar 

  43. Vo, B.; Coenen, F.; Le, B.: A new method for mining frequent weighted itemsets based on WIT-trees. Expert Syst. Appl. 40(4), 1256–1264, 2013

    Article  Google Scholar 

  44. Ha, T.; Lee, S.: Item-network-based collaborative filtering: a personalized recommendation method based on a user’s item network. Inf. Process. Manag. 53, 1171–1184, 2017

    Article  Google Scholar 

  45. Briganti, G.; Linkowski, P.: Item and domain network structures of the resilience scale for adults in 675 university students. Epidemiol. Psychiatric Sci., 2019. https://doi.org/10.1017/S2045796019000222.

    Article  Google Scholar 

  46. Dalege, J.; Borsboom, D.; Harreveld, F.V.; Maas, H.L.J.V.D.: Network analysis on attitudes a brief tutorial. Soc. Psychol. Personal. Sci. 8(5), 528–537, 2017

    Article  Google Scholar 

  47. Datta, S.; Chakraborty, S.; Mali, K.; Banerjee, S.; Roy, K.; Chatterjee, S.; Chakraborty, M.; Bhattacharjee, S.: Optimal usages of pessimistic association rules in cost effective decision making. In: proceedings of the 4th IEEE Optronix’17, pp. 1–5. (2017)

  48. Datta, S.; Bose, S.: Discovering association rules partially devoid of dissociation by weighted confidence. In: Proceedings of the 2nd IEEE ReTIS’15, pp. 138–143. (2015)

  49. Bag, S.; Kumar, S.K.; Tiwari, M.K.: An efficient recommendation generation using relevant jaccard similarity. Inf. Sci. 483, 53–64, 2019

    Article  Google Scholar 

  50. Dey, P.; Chaterjee, A.; Roy, S.: Influence maximization in online social network using different centrality measures as seed node of information propagation. Sadhana 44, 205, 2019

    Article  MathSciNet  Google Scholar 

  51. Datta, S.; Mali, K.; Ghosh, S.; Singh, R.; Das, S.: Interesting pattern mining using item influence. In: S. Satapathy et al. (eds.) Proceedings of the ICETE’19, LAIS, vol. 3, pp. 426–434. (2019)

  52. Li, Y.C.; Yeh, J.S.; Chang, C.C.: Isolated items discarding strategy for discovering high utility itemsets. Data Knowl. Eng. 64(1), 198–217, 2008

    Article  Google Scholar 

  53. Adamic, L.A.; Adar, E.: Friends and neighbors on the web. Soc. Netw. 25(3), 211–230, 2003

    Article  Google Scholar 

  54. Luarn, P.; Chiu, Y.P.: Influence of network density on information diffusion on social network sites: the mediating effects of transmitter activity. Inf. Dev. 32(3), 389–397, 2014

    Article  Google Scholar 

  55. Xu, X.; Zhu, C.; Wang, Q.; Zhu, X.; Zhou, Y.: Identifying vital nodes in complex networks by adjacency information entropy. Sci. Rep. 10 (article no. 2691) (2020)

  56. Lu, L.; Chen, D.; Ren, X.L.; Zhang, Q.M.; Zhang, Y.C.; Zhou, T.: Vital nodes identification in complex networks. Phys. Rep. 650, 1–63, 2016

    Article  MathSciNet  Google Scholar 

  57. Kiran, R.U.; Kotni, A.; Reddy, P.K.; Toyoda, M.; Bhalla, S.; Kitsuregawa, M.: Efficient discovery of weighted frequent itemsets in very large transactional databases: a re-visit. In: Proceedings of the IEEE International Conference on Big data (Big Data), pp. 723–732. (2018)

Download references

Author information

Authors and Affiliations

Authors

Contributions

SD developed the concept, designed the algorithms and wrote the manuscript. KM supervised the experimental analysis and data analysis. SG arranged the resources and did the coding of the algorithms in python for the experimental purposes. All of the authors have read and approved the final manuscript.

Corresponding author

Correspondence to Subrata Datta.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datta, S., Mali, K. & Ghosh, S. Weighted Association Rule Mining Over Unweighted Databases Using Inter-Item Link Based Automated Weighting Scheme. Arab J Sci Eng 46, 3169–3188 (2021). https://doi.org/10.1007/s13369-020-05085-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05085-2

Keywords

Navigation