Skip to main content
Log in

Thermochemical Co-conversion of Sugarcane Bagasse-LDPE Hybrid Waste into Biochar

  • Research Article-Chemical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Bagasse is a residue obtained from the processing of sugarcane (Saccharum officinarum). The aim of this study was to investigate the temperature profile, biochar yield and product quality of a locally designed thermochemical process for the conversion of sugarcane bagasse (SCB) and low-density polyethylene waste into biochar. Product quality was evaluated using Fourier transform infrared spectroscopy, scanning electron microscopy and Branueur–Emmett–Teller analyses. Product yield was 16.67 wt% and 45.46 wt% at 349°C and 250°C peak temperatures for SCB and hybrid biochar, respectively. Both SCB biochar and hybrid had a heterogeneous surface morphology and was mesoporous. The specific surface area of the SCB and hybrid biochar was 533.6 m2/g and 510.5 m2/g, respectively. The process has a three-pronged advantage of product development, waste management and resource conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Sheikhdavoodi, M.J.; Almassi, M.; Ebrahimi-Nik, M.; Kruse, A.; Bahrami, H.: Gasification of sugarcane bagasse in supercritical water; evaluation of alkali catalysts for maximum hydrogen production. J. Energy Inst. 88(4), 450–458, 2015

    Article  Google Scholar 

  2. Tsai, W.; Lee, M.; Chang, Y.: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrolysis 76(1–2), 230–237, 2006

    Article  Google Scholar 

  3. Adeniyi, A.G., Ighalo, J.O., Marques, G.: Utilisation of machine learning algorithms for the prediction of syngas composition from biomass bio-oil steam reforming. Int. J. Sustain. Energy (2020). https://doi.org/10.1080/14786451.2020.1803862

    Article  Google Scholar 

  4. Yin, C.-Y.: Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90(3), 1128–1132, 2011

    Article  Google Scholar 

  5. Scaramucci, J.A.; Perin, C.; Pulino, P.; Bordoni, O.F.; Da Cunha, M.P.; Cortez, L.A.: Energy from sugarcane bagasse under electricity rationing in Brazil: a computable general equilibrium model. Energy Policy 34(9), 986–992, 2006

    Article  Google Scholar 

  6. Hofsetz, K.; Silva, M.A.: Brazilian sugarcane bagasse: energy and non-energy consumption. Biomass Bioenergy 46, 564–573, 2012

    Article  Google Scholar 

  7. Chandel, A.K.; da Silva, S.S.; Carvalho, W.; Singh, O.V.: Sugarcane bagasse and leaves: foreseeable biomass of biofuel and bio-products. J. Chem. Technol. Biotechnol. 87(1), 11–20, 2012

    Article  Google Scholar 

  8. De Moraes Rocha, G.J.; Nascimento, V.M.; Goncalves, A.R.; Silva, V.F.N.; Martín, C.: Influence of mixed sugarcane bagasse samples evaluated by elemental and physical–chemical composition. Indust. Crops Prod. 64, 52–58, 2015

    Article  Google Scholar 

  9. Sun, J.-X.; Sun, R.; Sun, X.-F.; Su, Y.: Fractional and physico-chemical characterization of hemicelluloses from ultrasonic irradiated sugarcane bagasse. Carbohydr. Res. 339(2), 291–300, 2004

    Article  Google Scholar 

  10. Peng, F.; Ren, J.-L.; Xu, F.; Bian, J.; Peng, P.; Sun, R.-C.: Comparative study of hemicelluloses obtained by graded ethanol precipitation from sugarcane bagasse. J. Agric. Food Chem. 57(14), 6305–6317, 2009

    Article  Google Scholar 

  11. Morét-Ferguson, S.; Law, K.L.; Proskurowski, G.; Murphy, E.K.; Peacock, E.E.; Reddy, C.M.: The size, mass, and composition of plastic debris in the western North Atlantic Ocean. Mar. Pollut. Bull. 60(10), 1873–1878, 2010

    Article  Google Scholar 

  12. Dahlbo, H.; Poliakova, V.; Mylläri, V.; Sahimaa, O.; Anderson, R.: Recycling potential of post-consumer plastic packaging waste in Finland. Waste Manage. 71, 52–61, 2018

    Article  Google Scholar 

  13. Block, C.; Ephraim, A.; Weiss-Hortala, E.; Minh, D.P.; Nzihou, A.; Vandecasteele, C.: Co-pyrogasification of plastics and biomass, a review. Waste Biomass Valoriz. 10(3), 483–509, 2019

    Article  Google Scholar 

  14. Lourenço, P.M.; Serra-Gonçalves, C.; Ferreira, J.L.; Catry, T.; Granadeiro, J.P.: Plastic and other microfibers in sediments, macroinvertebrates and shorebirds from three intertidal wetlands of southern Europe and west Africa. Environ. Pollut. 231, 123–133, 2017

    Article  Google Scholar 

  15. Adeniyi, A.G.; Eletta, O.A.A.; Ighalo, J.O.: Computer aided modelling of low density polyethylene pyrolysis to produce synthetic fuels. Nigerian J. Technol. 37(4), 945–949, 2018

    Article  Google Scholar 

  16. Adeniyi, A.G.; Ighalo, J.O.: Simulation of low density polyethylene (LDPE) pyrolysis and optimisation of pyro-oil yield. Int. Polym. Process. 35(2), 229–235, 2020

    Article  Google Scholar 

  17. Adeniyi, A.G.; Ighalo, J.O.: Computer-aided modeling of thermochemical conversion processes for environmental waste management. In: Hussain, C.M. (ed.) Handbook of Environmental Materials Management, pp. 1–16. Springer, Berlin (2020)

    Google Scholar 

  18. Waheed, Q.M.; Williams, P.T.: Hydrogen production from high temperature pyrolysis/steam reforming of waste biomass: rice husk, sugar cane bagasse, and wheat straw. Energy Fuels 27(11), 6695–6704, 2013

    Article  Google Scholar 

  19. Adeniyi, A.G.; Ighalo, J.O.; Abdulsalam, A.: Modelling of integrated processes for the recovery of the energetic content of sugarcane bagasse. Biofuels Bioprod. Biorefin. 13(4), 1057–1067, 2019

    Article  Google Scholar 

  20. Gómez, E.O.; Cortez, L.s.A.B., Lora, E.S., Sanchez, C.G., and Bauen, A. : Preliminary tests with a sugarcane bagasse fueled fluidized-bed air gasifier. Energy Convers. Manage. 40(2), 205–214, 1999

    Article  Google Scholar 

  21. Jayaraman, K.; Gokalp, I.; Petrus, S.; Belandria, V.; Bostyn, S.: Energy recovery analysis from sugar cane bagasse pyrolysis and gasification using thermogravimetry, mass spectrometry and kinetic models. J. Anal. Appl. Pyrolysis 132, 225–236, 2018

    Article  Google Scholar 

  22. Iryani, D.A.; Kumagai, S.; Nonaka, M.; Sasaki, K.; Hirajima, T.: Characterization and production of solid biofuel from sugarcane bagasse by hydrothermal carbonization. Waste Biomass Valoriz. 8(6), 1941–1951, 2017

    Article  Google Scholar 

  23. Chai, X.; He, H.; Fan, H.; Kang, X.; Song, X.: A hydrothermal-carbonization process for simultaneously production of sugars, graphene quantum dots, and porous carbon from sugarcane bagasse. Bioresource Technol. 282, 142–147, 2019

    Article  Google Scholar 

  24. Abdelhafez, A.A., Abbas, M.H.H., and Hamed, M.H.: Biochar: A Solution For Soil Lead (Pb) Pollution’, in Editor (Ed.)(Eds.): ‘Book Biochar: A Solution For Soil Lead (Pb) Pollution’ (Assiut University Center for Environmental Studies-Egypt, 2016, edn.), pp.

  25. Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V.: Biochar from the thermochemical conversion of orange (Citrus sinensis) peel and albedo: product quality and potential applications. Chem. Africa 3(2), 439–448, 2020

    Article  Google Scholar 

  26. Adeniyi, A.G., Ighalo, J.O., Onifade, D.V.: Production of biochar from elephant grass (Pernisetum purpureum) using an updraft biomass gasifier with retort heating. Biofuels (2019). https://doi.org/10.1080/17597269.2019.1613751

    Article  Google Scholar 

  27. Adeniyi, A.G., Ighalo, J.O., Onifade, D.V.: Production of bio-char from plantain (Musa paradisiaca) fibers using an Updraft Biomass Gasifier with retort heating. Combust. Sci. Technol. (2019). https://doi.org/10.1080/00102202.2019.1650269

    Article  Google Scholar 

  28. Adelodun, A.A.; Adeniyi, A.G.; Ighalo, J.O.; Onifade, D.V.; Arowoyele, L.T.: Thermochemical conversion of oil palm Fiber-LDPE hybrid waste into biochar. Bioprod. Biorefin., Biofuels (2020)

    Book  Google Scholar 

  29. Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89(5), 913–933, 2010

    Article  Google Scholar 

  30. Naik, D.K.; Monika, K.; Prabhakar, S.; Parthasarathy, R.; Satyavathi, B.: Pyrolysis of sorghum bagasse biomass into bio-char and bio-oil products. J. Thermal Anal. Calorim. 127(2), 1277–1289, 2017

    Article  Google Scholar 

  31. Yin, R.; Liu, R.; Mei, Y.; Fei, W.; Sun, X.: Characterization of bio-oil and bio-char obtained from sweet sorghum bagasse fast pyrolysis with fractional condensers. Fuel 112, 96–104, 2013

    Article  Google Scholar 

  32. Saleh, M.E.; Hedia, R.M.: Mg-Modified Sugarcane Bagasse Biochar for Dual Removal of Ammonium and Phosphate Ions from Aqueous Solutions. Alexandria Sci. Exchange J. 39, 74–91, 2018

    Article  Google Scholar 

  33. Hafshejani, L.D.; Hooshmand, A.; Naseri, A.A.; Mohammadi, A.S.; Abbasi, F.; Bhatnagar, A.: Removal of nitrate from aqueous solution by modified sugarcane bagasse biochar. Ecol. Eng. 95, 101–111, 2016

    Article  Google Scholar 

  34. Hadi, J.A.; Najmuldeen, F.G.; Ahmed, I.: Quality restoration of waste polyolefin plastic material through the dissolution-reprecipitation technique. Chem. Ind. Chem. Eng. Quart. 20(2), 163–170, 2014

    Article  Google Scholar 

  35. Doğan, F.; Şirin, K.; Kolcu, F.; Kaya, İ: Conducting polymer composites based on LDPE doped with poly (aminonaphthol sulfonic acid). J. Electrostat. 94, 85–93, 2018

    Article  Google Scholar 

  36. Moreno-Bayona, D.A., Gómez-Méndez, L.D., Blanco-Vargas, A., Castillo-Toro, A., Herrera-Carlosama, L., Poutou-Pinales, R.A., Salcedo-Reyes, J.C., Díaz-Ariza, L.A., Castillo-Carvajal, L.C., Rojas-Higuera, N.S.: Simultaneous bioconversion of lignocellulosic residues and oxodegradable polyethylene by Pleurotus ostreatus for biochar production, enriched with phosphate solubilizing bacteria for agricultural use. PloS ONE (2019). https://doi.org/10.1371/journal.pone.0217100

    Article  Google Scholar 

  37. Rodier, L.; Bilba, K.; Onésippe, C.; Arsène, M.-A.: Utilization of bio-chars from sugarcane bagasse pyrolysis in cement-based composites. Ind. Crops Prod. 141, 111731, 2019

    Article  Google Scholar 

  38. Li, X.; Zhang, H.; Li, J.; Su, L.; Zuo, J.; Komarneni, S.; Wang, Y.: Improving the aromatic production in catalytic fast pyrolysis of cellulose by co-feeding low-density polyethylene. Appl. Catal. A General 455, 114–121, 2013

    Article  Google Scholar 

  39. Pereira, P.H.F.; Voorwald, H.C.J.; Cioffi, M.O.H.; Mullinari, D.R.; Da Luz, S.M.; Da Silva, M.L.C.P.: Sugarcane bagasse pulping and bleaching: Thermal and chemical characterization. BioResources 6(3), 2471–2482, 2011

    Google Scholar 

  40. Ahmad, S.; Wong, Y.; Veloo, K.: Sugarcane bagasse powder as biosorbent for reactive red 120 removals from aqueous solution. In: Mohammad Razi, M.A. (ed.) Book Sugarcane Bagasse Powder as Biosorbent for Reactive Red 120 Removals from Aqueous Solution, p. 012027, IOP Publishing (2018)

  41. Ighalo, J.O.; Adeniyi, A.G.: A Mini-Review of the Morphological Properties of Biosorbents Derived from Plant Leaves. SN Appl. Sci. 2(3), 509, 2020

    Article  Google Scholar 

  42. Ighalo, J.O.; Adeniyi, A.G.: Biomass to biochar conversion for agricultural and environmental applications in nigeria: challenges, peculiarities and prospects. Mater. Int. 2(2), 111–116, 2020

    Article  Google Scholar 

  43. Ighalo, J.O.; Adeniyi, A.G.: A comprehensive review of water quality monitoring and assessment in Nigeria. Chemosphere 260, 127569, 2020

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adewale George Adeniyi.

Ethics declarations

Conflict of interest

No potential conflict of interest was reported by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adeniyi, A.G., Abdulkareem, S.A., Ighalo, J.O. et al. Thermochemical Co-conversion of Sugarcane Bagasse-LDPE Hybrid Waste into Biochar. Arab J Sci Eng 46, 6391–6397 (2021). https://doi.org/10.1007/s13369-020-05119-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-05119-9

Keywords

Navigation