Skip to main content
Log in

Structural, magnetic, and optical properties of degenerated Ni and (Ga/Zn) co-doped TiO2 nanocomposites

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Titanium oxide (TiO2) codoped with Ni-Ga and Ni-Zn nanoparticles were synthesized by the thermal co-precipitation method. The energy-dispersive x‐ray fluorescence, X‐Ray Diffraction, UV–visible absorption spectroscopy, and magnetization methods were performed to study the elemental content, crystalline structure, optical and magnetic properties, respectively. The roadmap of the present work is to explore the conditions of fabrication of dilute magnetic semiconductors, TiO2. It was established that the hydrogenation of the host-doped samples is required to create ferromagnetic properties. It was reported that the effect of doping with non-magnetic Ga3+ and Zn2+ ions created magnetic properties in the hydrogenated Ni-doped TiO2. Some optical properties of undoped and host TiO2 nanopowders were investigated using the diffuse reflectance spectroscopy (DRS) method. The higher magnetic energy observed with Ni/Ga-co-doped TiO2 was reported and discussed by itinerant electrons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. B. Roose, C.M. Johansen, K. Dupraz, T. Jaouen, P. Aebi, U. Steiner, A. Abate, A Ga-doped SnO2 mesoporous contact for UV stable highly efficient perovskite solar cells. J. Mater. Chem. A 6(4), 1850–1857 (2018)

    Google Scholar 

  2. P.V. Kala, B.T. Rao, K. Srinivasarao, Structural, optical and gas sensing properties of TiO2-MoO3, thin films. Int. J. Thin. Fil. Sci. Tec. 8(3), 163–174 (2019). https://doi.org/10.18576/ijtfst/080309

    Article  Google Scholar 

  3. A. Balhamri, A. Deraoui, Y. Bahou, M. Rattal, A.Z. Mouhsen, M. Harmouchi, A. Tabyaoui, E.M. Oualim, Surface and optical properties of zinc oxide doped with fluor synthesized by magnetron sputtering: applications in transparent conductive oxides. Int. J. Thin. Fil. Sci. Tec. 4(3), 205–210 (2015). https://doi.org/10.12785/ijtfst/040308

    Article  Google Scholar 

  4. J. Dong, J. Han, Y. Liu, A. Nakajima, S. Matsushita, S. Wei, W. Gao, Defective black TiO2 synthesized via anodization for visible-light photocatalysis. ACS Appl. Mater. Interfaces 6, 1385–1388 (2018)

    Google Scholar 

  5. D.V. Bavykin, V.N. Parmon, A.A. Lapkin, F.C. Walsh, The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J. Mater. Chem. 14, 3370–3377 (2004)

    Google Scholar 

  6. H.-F. Zhuang, C.-J. Lin, Y.-K. Lai, L. Sun, J. Li, Some critical structure factors of titanium oxide nanotube array in its photocatalytic activity. Environ. Sci. Technol. 41, 4735–4740 (2007)

    ADS  Google Scholar 

  7. J. Tian, H. Gao, H. Deng, L. Sun, H. Kong, P. Yang, J. Chu, Structural, magnetic andoptical properties of Ni-doped TiO2 thin films deposited on silicon(100) substrates bysol–gel process. J. Alloys Compd. 581, 318–323 (2013)

    Google Scholar 

  8. M. Manzoor, A. Rafiq, M. Ikram, M. Nafees, S. Ali, Structural, optical, and magnetic study of Ni-doped TiO2 nanoparticles synthesized by sol–gel method. Int. Nano Lett. 8, 1–8 (2018)

    Google Scholar 

  9. X. Lu, T. Zhao, X. Gao, J. Ren, X. Yan, P. La, Investigation of Mo-, Pt-, and Rh-doped rutile TiO2 based on first-principles calculations. AIP Adv. 8, 075014 (2018)

    ADS  Google Scholar 

  10. Y. Ma, X. Wang, Y. Jia, X. Chen, H. Han, C. Li, Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114, 9987–10043 (2014)

    Google Scholar 

  11. X. Chen, S.S. Mao, Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891–2959 (2007)

    Google Scholar 

  12. U. Diebold, The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53–229 (2003)

    ADS  Google Scholar 

  13. A.C.M. Padilha, H. Raebiger, A.R. Rocha, G.M. Dalpian, Charge storage in oxygen deficient phases of TiO2: defect physics without defects. Sci. Rep. 6, 28871 (2016)

    ADS  Google Scholar 

  14. Y. Xu, C. Zhang, L. Zhang, X. Zhang, H. Yao, J. Shi, Pd-catalyzed instant hydrogenation of TiO2 with enhanced photocatalytic performance energy. Environ. Sci. Technol. 9, 2410–2417 (2016)

    Google Scholar 

  15. A. Bouaine, N. Brihi, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, A. Dinia, Structural, optical, and magnetic properties of Co-doped SnO2 powders synthesized by the Co-precipitation technique. J. Phys. Chem. C 111, 2924–2928 (2007)

    Google Scholar 

  16. A.A. Dakhel, A.R. AlBasri, M.A. Khunji, Development of room-temperature ferromagnetism in nanocomposite CdO codoped with Al and Gd: treatment in hydrogen atmosphere. J. Supercond. Novel Magn. 32, 651–657 (2019)

    Google Scholar 

  17. A.A. Dakhel, M. El-Hilo, M. Bououdina, Ferromagnetic properties of Cu- and Fe-codoped nanocrystalline CdO powders: annealing in hydrogen promote long-range. Adv. Powder Technol. 25, 1839–1844 (2014)

    Google Scholar 

  18. A.A. Dakhel, H. Hamad, Adnan Jaafar, Investigation to the structural, optical, and magnetic properties of synthesized Ni-doped anatase nanoparticles: essential role of treatment in hydrogen on long-range ferromagnetic order. J. Supercond. Novel Magn. 32, 253–260 (2019)

    Google Scholar 

  19. M. El-Hilo, A.A. Dakhel, Z.J. Yacoob, Magnetic interactions in Co2+ doped ZnO synthesized by co-precipitation method: efficient effect of hydrogenation on the long-range ferromagnetic order. J. Magn. Magn. Mater. 482, 125–134 (2019)

    ADS  Google Scholar 

  20. A.A. Dakhel, Hydrogenation tuned the created ferromagnetic properties of Ni doped nano-ZnO. Appl. Phys. A 123(214), 2–8 (2017)

    Google Scholar 

  21. K. Singh, I. Rawal, P. Gautam, N. Sharma, R. Dhar, Diluted magnetic semiconducting properties of nanocrystalline (X = Fe, Ga, Ni) thin films deposited by PLD technique for spintronic applications. J. Magn. Magn. Mater. 468, 259–268 (2018)

    ADS  Google Scholar 

  22. F.X. Jiang, X.H. Xu, J. Zhang, H.S. Wu, G.A. Gehring, High temperature ferromagnetism of the vacuum-annealed (In1-xFex)2O3 powders. Appl. Surf. Sci. 255, 3655–3658 (2009)

    ADS  Google Scholar 

  23. M. Bououdina, A.A. Dakhel, M. El-Hilo, D.H. Anjum, M.B. Kanoun, S. Goumri-Said, Revealing a room temperature ferromagnetism in cadmium oxide nanoparticles: an experimental and first-principles study. RSC Adv. 5, 33233–33238 (2015)

    Google Scholar 

  24. Q. Xu, H. Schmidt, S. Zhou, K. Potzger, M. Helm, H. Hochmuth, M. Lorenz, A. Setzer, P. Esquinazi, C. Meinecke, M. Grundmann, Room temperature ferromagnetism in ZnO films due to defects. Appl. Phys. Lett. 92, 082508 (2008)

    ADS  Google Scholar 

  25. S. Roy, H. Luitel, D. Sanyal, Origin of ferromagnetism in Cu doped rutile TiO2-An ab-initio approach. Comput. Condens. Matter 13, 127–130 (2017)

    Google Scholar 

  26. B. Qi, S. Olafsson, H.P. Gislason, Vacancy defect-induced d0 ferromagnetism in undoped ZnO nanostructures: controversial origin and challenges. Prog. Mater. Sci. 90, 45–74 (2017)

    Google Scholar 

  27. G. Feng, W. Shufen, C. Hongming, L. Chunzhang, Nanotechnology 19, 095708 (2008)

    Google Scholar 

  28. S. Kumar, Y.J. Kim, B.H. Koo, S. Gautam, K.H. Chae, R. Kumar, C.G. Lee, Mater. Lett. 63, 194 (2009)

    Google Scholar 

  29. I.S. Elfimov, S. Yunoki, G.A. Sawatzky, Phys. Rev. Lett. 89, 216403 (2002)

    ADS  Google Scholar 

  30. A.A. Dakhel, M. Bououdina, Structural, optical, and magnetic properties of Cu- and Ni-codoped CdO dilute magnetic nanocrystalline semiconductor: effect of hydrogen post- treatment. Appl. Phys. A 119, 1053–1060 (2015)

    ADS  Google Scholar 

  31. A.A. Dakhel, Critical role of hydrogenation for creation of magnetic Cd–Cu co-incorporated TiO2 nanocrystallites. Appl. Phys. A 126, 41 (2020)

    ADS  Google Scholar 

  32. C. Kittel, Introduction to Solid State Physics, 7th edn. (John Wiley & Sons Inc/USA, 1996) p.614

  33. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    ADS  Google Scholar 

  34. L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, Rietveld refinement guidelines. J. Appl. Cryst. 32, 36 (1999)

    Google Scholar 

  35. A.K. Zak, W.H. Abd Majid, M.E. Abrishami, R. Yousefi, X-ray analysis of ZnO nanoparticles by Williamson-Hall and size–strain plot methods. Solid State Sci. 13, 251–256 (2011)

    ADS  Google Scholar 

  36. S.M. Gupta, M. Tripathi, A review of TiO2 nanoparticles. Chin. Sci. Bull. 56, 1639–1657 (2011)

    Google Scholar 

  37. C. Su, B.-Y. Hong, C.-M. Tseng, Sol-gel preparation and photocatalysis of titanium dioxide. Catal. Today 96, 119–126 (2004)

    Google Scholar 

  38. A.G. Gaynor, R.J. Gonzalez, R.M. Davis, R. Zallen, Characterization of nanophase titania particles synthesized using in situ steric stabilization. J. Mater. Res. 12, 1755–1765 (1997)

    ADS  Google Scholar 

  39. A.E. Morales, E.S. Mora, U. Pal, Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Revista Mexicana de Fisica S 53, 18–22 (2007)

    Google Scholar 

  40. D. Sojic, V. Despotovic, B. Abramovic, N. Todorova, T. Giannakopoulou, C. Trapalis, Photocatalytic degradation of mecoprop and clopyralid in aqueous suspensions of nanostructured N-doped TiO2. Molecules 15, 2994–3009 (2010). https://doi.org/10.3390/molecules15052994

    Article  Google Scholar 

  41. F.N.C. Anyaegbunam, C. Augustine, A study of optical gap associated Urbach energy tail of chemically deposited metal oxides binary films. Dig. J. Nanomater. Biostruct. 13, 847–856 (2018)

    Google Scholar 

  42. J. I. Pankove, Optical Processes in Semiconductors, (Dover, NY, 1975), p.36

  43. S.C. Baker-Finch, K.R. McIntosh, D. Yan, K.C. Fong, Near-infrared free carrier absorption in heavily doped silicon. J. Appl. Phys. 116, 063106 (2014)

    ADS  Google Scholar 

  44. A.A. Dakhel, A.Y. Ali-Mohamed, Optical and transport phenomena in CdO: La films prepared by sol-gel method. J. Sol-Gel Sci. Technol. 44, 241–247 (2007)

    Google Scholar 

  45. M. Pozzo, D. Alfe, Hydrogen dissociation and diffusion on transition metal (=Ti, Zr, V, Fe, Ru Co, Rh, Ni, Pd, Cu, Ag)-doped Mg (0001) surface. Int. J. Hydrogen Energy 34, 1922–1930 (2009)

    ADS  Google Scholar 

  46. H. Wang, J. Wei, R. Xiong, J. Shi, J. Magn. Magn. Mater 324, 2057–2061 (2012)

    ADS  Google Scholar 

  47. A. Kumar, M.K. Kashyap, N. Sabharwal, S. Kumar, A. Kumar, P. Kumar, K. Asokan, Solid State Sci. 73, 19–26 (2017)

    ADS  Google Scholar 

  48. S. Zhou, E. Cizmar, K. Potzger, M. Krause, G. Talut, M. Helm, J. Fassbender, S.A. Zvyagin, J. Wosnitza, H. Schmidt, Phys. Rev. B 79, 113201 (2009)

    ADS  Google Scholar 

  49. V. Raghavan, Materials Science and Engineering: A first course, 5th edn., (Prentic-Hall of India private limited, New Delhi, 2004), p.406

  50. B. Parveen, M.U. Hassan, Z. Khalid, S. Riaz, S. Naseem, Room-temperature ferromagnetism in Ni-doped TiO2 diluted magnetic semiconductor thin films. J. Appl. Res. Technol. 15(2), 132–149 (2017)

    Google Scholar 

  51. S.K.S. Patel, P. Jena, N.S. Gajbhiye, Structural and room-temperature ferromagnetic properties of pure and Ni-doped TiO2 nanotubes. Mater. Today Proc. 15, 388–393 (2019)

    Google Scholar 

  52. Q. Wang, X. Liu, X. Wei, J. Dai, W. Li, Ferromagnetic property of Co and Ni doped TiO2 nanoparticles. J. Nanomater. (2015). https://doi.org/10.1155/2015/371582

    Article  Google Scholar 

  53. S. Waseem, S. Anjum, L. Mustafa, T. Zeeshan, Z.N. Kayani, K. Javed, Structural, magnetic and optical investigations of Fe and Ni co-doped TiO2 dilute magnetic semiconductors. Cer. Int. 44, 17767–17774 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Dakhel.

Ethics declarations

Conflict of interest

No conflict of interest exists. This article is original, not published before, and not under consideration for publication elsewhere. There are no conflicts of interest associated with this publication.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dakhel, A.A. Structural, magnetic, and optical properties of degenerated Ni and (Ga/Zn) co-doped TiO2 nanocomposites. Appl. Phys. A 126, 948 (2020). https://doi.org/10.1007/s00339-020-04131-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-04131-y

Keyword

Navigation