Skip to main content
Log in

Design of low power, programmable low-Gm OTAs and Gm-C filters for biomedical applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, two programmable operational transconductance amplifiers (POTAs)—one using bulk driven attenuator (BDA) and another using programmable current mirror (PCM) are proposed in order to achieve low-Gm and high dynamic range. These OTAs are denoted as BDA-POTA and PCM-OTA respectively and are realized using composite transistors operated in the subthreshold region. The pseudo resistor is used for achieving programmability in the former and for improving the linearity and dynamic range in the latter. The proposed OTAs and two 4th order programmable Butterworth low pass filters (LPF) are designed and implemented in CMOS 180 nm technology with a supply voltage of 0.9 V. Their performances are evaluated through post-layout simulations and are found to be superior compared to those of POTAs reported in the literature for biomedical applications. The power consumption, transconductance, dynamic range and input-referred noise of BDA-POTA and PCM-OTA are [25.2 nW, (7.89–15.61 nS), (77.54–74.89 dB), (39.86–51.19 µVrms)] and [72.81 nW, (5.49–174.5 nS), (91.20–84.39 dB), (17.19–34.92 µVrms)] respectively. The power dissipation and cut off frequency range of the LPF using BDA-POTA and PCM-OTA are [197.8 nW, (30–100 Hz)] and [209.8 nW, (16–971 Hz)] respectively. The latter achieves 13.6 times wider programmability with only 5% increase in power dissipation. The proposed LPFs have better FOM compared to those reported in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. Li, Y., Poon, C. C. Y., & Zhang, Y. (2010). Analog integrated circuits design for processing physiological signals. IEEE Reviews in Biomedical Engineering, 3, 93–105.

    Article  Google Scholar 

  2. Lee, S. Y., & Cheng, C. J. (2009). Systematic design and modeling of an OTA-C filter for portable ECG detection. IEEE Transactions on Biomedical Circuits and Systems, 3, 53–64.

    Article  Google Scholar 

  3. Harrison, R. R. (2008). The design of integrated circuits to observe brain activity. Proceedings of the IEEE, 96(7), 1203–1216.

    Article  Google Scholar 

  4. Sanjay, R., Senthil Rajan, V., & Venkataramani, B. (2018). A low-power low-noise and high swing biopotential amplifier in 0.18 μm CMOS. Analog Integrated Circuits and Signal Processing, 96(3), 565–576.

    Article  Google Scholar 

  5. Elamien, M. B., & Mahmoud, S. A. (2017). Analysis and design of a highly linear CMOS OTA for portable biomedical applications in 90 nm CMOS. Microelectronics Journal, 70, 72–80.

    Article  Google Scholar 

  6. Shiue, M., Yao, K., Gong, C., et al. (2011). Tunable high resistance voltage controlled pseudo-resistor with wide input voltage swing capability. Electronics Letters, 47, 377.

    Article  Google Scholar 

  7. Tajalli, A., & Leblebici, Y. (2012). Power and area efficient MOSFET-C filter for very low frequency applications. Analog Integrated Circuits and Signal Processing, 70, 123.

    Article  Google Scholar 

  8. Lee, S.-Y., Wang, C.-P., & Chu, Y.-S. (2019). Low-voltage OTA-C filter with an area and power-efficient OTA for bio signal sensor applications. IEEE Transactions on Biomedical Circuits and Systems, 13(1), 56–67.

    Article  Google Scholar 

  9. Alhammadi, A. A., & Mahmoud, S. A. (2016). Fully differential fifth-order dual-notch power line interference filter oriented to EEG detection system with low pass feature. Microelectronics Journal, 56, 122–133.

    Article  Google Scholar 

  10. Lee, S. Y., & Cheng, C. J. (2009). Systematic design and modelling of an OTA-C filter for portable ECG detection. IEEE Transactions on Biomedical Circuits and Systems, 3(1), 53–64.

    Article  Google Scholar 

  11. Stotts, L. J. (1989). Introduction to implantable biomedical IC design. IEEE Circuits and Devices Magazine, 5(1), 12–18.

    Article  Google Scholar 

  12. Seok, C., Lim, K., Seo, J., Kim, H., Im, S., Kim, J.-H., et al. (2013). Area-efficient RC low pass filter using T-networked resistors and capacitance multiplier. In 2013 13th International Conference on Control Automation and Systems (ICCAS), pp. 1308–1311.

  13. Solís-Bustos, S., Silva-Martínez, J., Maloberti, F., & Sánchez-Sinencio, E. (2000). A 60 dB dynamic-range CMOS sixth-order 2.4 Hz lowpass filter for medical applications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing Conference, 47, 1391–1398.

    Article  Google Scholar 

  14. Senthil Rajan, V., Sanjay, R., Kumaravel, S., & Venkataramani, B. (2019). Area and power efficient flipped voltage follower based symmetrical floating impedance scaler with improved accuracy for fully differential filters. AEU International Journal of Electronics and Communications, 106, 116–125.

    Article  Google Scholar 

  15. Senthil Rajan, V., Sanjay, R., Hari Kishore, K., & Venkataramani, B. (2020). A cross-coupled symmetric floating impedance scaler with enhanced bandwidth and accuracy. AEU International Journal of Electronics and Communications, 122, 153242.

    Article  Google Scholar 

  16. Silva-Martinez, J., & Salcedo-Suñer, J. (1997). IC voltage to current transducers with very small transconductance. Analog Integrated Circuits and Signal Processing, 13(3), 285–293.

    Article  Google Scholar 

  17. Silva-Martinez, J., & Solis-Bustos, S. (1999). Design considerations for high performance very low frequency filters. In ISCAS’99. Proceedings of the 1999 IEEE international symposium on circuits and systems VLSI (Cat. No. 99CH36349), Vol. 2, pp. 648–651.

  18. Solís-Bustos, S., Silva-Martínez, J., Maloberti, F., & Sánchez-Sinencio, E. (2000). A 60-dB dynamic-range CMOS sixth-order 2.4-Hz lowpass filter for medical applications. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 47, 1391.

    Article  Google Scholar 

  19. Silva-Martinez, J., & Salcedo-Suñer, J. (1997). IC voltage to current transducers with very small transconductance. Analog Integrated Circuits and Signal Processing, 13, 285.

    Article  Google Scholar 

  20. Rodriguez-Villegas, E., Yúfera, A., & Rueda, A. (2004). A 1.25-V micropower Gm-C filter based on FGMOS transistors operating in weak inversion. IEEE Journal of Solid-State Circuits, 39, 100.

    Article  Google Scholar 

  21. Mourabit, A., Lu, G.-N., & Pittet, P. (2005). Wide-linear-range subthreshold OTA for low-power, low-voltage and low-frequency applications. IEEE Transactions on Circuits and Systems I: Regular Papers, 52, 1481.

    Article  Google Scholar 

  22. Chawla, R., Adil, F., Serrano, G., & Hasler, P. E. (2007). Programmable Gm-C filters using floating-gate operational transconductance amplifiers. IEEE Transactions on Circuits and Systems I: Regular Papers, 54(3), 481–491.

    Article  Google Scholar 

  23. Soares, Carlos F. T., de Moraes, G. S., & Petraglia, A. (2014). A low-transconductance OTA with improved linearity suitable for low-frequency Gm-C filters. Microelectronics Journal, 45(11), 1499–1507.

    Article  Google Scholar 

  24. Moreno, Ricardo F. L., Baruqui, Fernando A. P., & Petraglia, A. (2015). Bulk-tuned Gm-C filter using current cancellation. Microelectronics Journal, 46, 777–782.

    Article  Google Scholar 

  25. Sawigun, C., & Serdijn, W. A. (2012) A modular transconductance reduction technique for very low-frequency Gm-C filters. In IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1183–1186.

  26. Kongpoon, M. (2013). A novel OTA-based voltage attenuation technique for very low frequency filtering using low-Gm OTA filters. In International symposium on intelligent signal processing and communication systems, pp. 680–683.

  27. Thanapitak, S. (2014). An 1-V, 74-dB, sub-Hz Gm-C filter based on a modular transconductance reduction technique. In 11th International conference on electrical engineering electronics, computer, telecommunications and information technology, pp. 2–5.

  28. Thanapitak, S. (2015). OTA-C differentiator for large time constant applications. In 12th international conference on electrical engineering/electronics, computer, telecommunications and information technology, pp. 1–4.

  29. Senthil Rajan, V., Kakara, H., Sanjay, R., Kumaravel, S., & Venkataramani, B. (2020). A novel programmable attenuator based low Gm-OTA for biomedical applications. Microelectronics Journal, 97, 104721.

    Article  Google Scholar 

  30. Mahmoud, S. A., Bamakhramah, A., & Al-Tunaiji, S. A. (2013). Low noise low pass filter for ECG portable detection systems with digitally programmable range. Circuits, Systems, and Signal Processing, 32(5), 2029–2045.

    Article  MathSciNet  Google Scholar 

  31. Hanumantha, G., & Rekha, S. (2018). Low voltage, low power Gm-C filter for low frequency applications. Journal of Low Power Electronics, 14, 266–274.

    Article  Google Scholar 

  32. Igarashi, Y., Hyogo, A., & Sekine, K. (1994). Design of very lowdistortion, four-quadrant analog multiplier-type CMOS-OTA considering variation of mobility according to the gate voltage. Electronics and Communications in Japan (Part II: Electronics), 77(7), 65–76.

    Article  Google Scholar 

  33. Veeravalli, A., Sánchez-Sinencio, E., & Silva-Martínez, J. (2005). A CMOS transconductance amplifier architecture with wide tuning range for very low frequency applications. IEEE Journal of Solid-State Circuits, 37(6), 776–781.

    Article  Google Scholar 

  34. Gray, P. R., Hurst, P. J., Lewis, S. H., & Meyer, R. G. (2009). Analysis and design of analog integrated circuits (5th ed.). Hoboken: Wiley.

    Google Scholar 

  35. Gosselin, B., Sawan, M., & Kerherve, E. (2010). Linear-phase delay filters for ultra-low-power signal processing in neural recording implants. IEEE Transactions on Biomedical Circuits and Systems, 4(3), 171–180.

    Article  Google Scholar 

  36. Elamien, M. B., & Mahmoud, S. A. (2018). On the design of highly linear CMOS digitally programmable operational transconductance amplifiers for low and high frequency applications. Analog Integrated Circuits and Signal Processing, 97, 225–241.

    Article  Google Scholar 

  37. Rezaei, F., & Azhari, S. J. (2011). Ultra low voltage, high performance operational transconductance amplifier and its application in a tunable Gm-C filter. Microelectronics Journal, 42, 827–836.

    Article  Google Scholar 

  38. Pinto, P. M., Ferreira, Luís H. C., Colletta, G. D., & Braga, Rodrigo A. S. (2019). A 0.25-V fifth-order Butterworth low-pass filter based on fully differential difference transconductance amplifier architecture. Microelectronics Journal, 92, 104606.

    Article  Google Scholar 

  39. Krishna, J. R. M., & Laxminidhi, T. (2019). Widely tunable low-pass gm-C filter for biomedical applications. IET Circuits, Devices and Systems, 13, 239–244.

    Article  Google Scholar 

  40. Sun, C. Y., & Lee, S. Y. (2018). Fifth-order butter worth OTA-C LPF with multiple-output differential-input OTA for ECG applications. IEEE Transactions on Circuits and Systems II: Express Briefs, 65, 421–425.

    Article  Google Scholar 

  41. Rakhi, R., Taralkar, A. D., Vasantha, M. H., & YB, N. K. (2017). A 0.5 V low power OTA-C low pass filter for ECG detection. In IEEE Computer Society annual symposium on VLSI (ISVLSI), pp. 589–593.

  42. Arya, R., & Oliveira, J. P. (2016). Gm-C biquad filter for low signal sensor applications. In 2016 MIXDES-23rd international conference mixed design of integrated circuits and systems, pp. 207–210.

  43. Chart-O-Matic: View Signals and Annotations, PhysioNet, created by MIT Room E25-505A. http://www.physionet.org/cgi-bin/chart.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Senthil Rajan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajan, V.S., Venkataramani, B. Design of low power, programmable low-Gm OTAs and Gm-C filters for biomedical applications. Analog Integr Circ Sig Process 107, 389–409 (2021). https://doi.org/10.1007/s10470-020-01748-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01748-0

Keywords

Navigation