Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

The Potency of Catechin from Gambir (Uncaria gambir Roxb.) as a Natural Inhibitor of MurA (1UAE) Enzyme: In vitro and In silico studies

Author(s): Bella Riyana, Desi Harneti Putri Huspa, Mieke Hemiawati Satari and Dikdik Kurnia*

Volume 17, Issue 12, 2020

Page: [1531 - 1537] Pages: 7

DOI: 10.2174/1570180817999200714104737

Price: $65

Abstract

Background: Currently, infectious diseases caused by pathogenic and resistant bacteria are more challenging for anti-bacterial drug discovery. The discovery of new anti-bacterial agents developed in many mechanisms includes disruption of the bacterial cell wall formations. The MurA is a key enzyme contributing to the first step of bacterial peptidoglycan biosynthesis and is, therefore, proposed as an effective bactericidal target.

Objective: The purpose of this research is to identify anti-bacterial compounds from U. gambir Roxb and to predict the potential inhibitory activities against murA enzyme by in silico study.

Materials and Methods: Investigation and discovery of new inhibitors of MurA enzyme were conducted on the medicinal plant of Gambir (Uncaria gambir Roxb) and those that reportedly contained anti-bacterial agents. The anti-bacterial compounds were isolated by combinations of chromatography methods guided by anti-bacterial activity against bacteria of E. faecalis, S. mutans, and S. sanguinis. The structures of active compounds were characterized by spectroscopic methods, and the anti-bacterial activity was evaluated by the microdilution method (in vitro) combined with molecular docking of the MurA enzyme (in silico).

Results: The anti-bacterial flavonoids of catechin were isolated from U. gambir Roxb with MIC values of 6250 and 12500 ppm, respectively, against S. sanguinis and E. faecalis. The in silico study showed that catechin has a binding affinity of -8.5 Kcal/mol to MurA which is higher than fosfomycin as a positive control.

Conclusions: The catechin is predicted to have potential as a new natural inhibitor of the MurA enzyme to inhibit bacterial cell wall biosynthesis.

Keywords: Uncaria gambir Roxb., (+)-catechin, MurA enzyme, binding affinity, cell wall synthesis, antibiotics.

Graphical Abstract
[1]
Andersson, D.I.; Hughes, D. Antibiotic resistance and its cost: Is it possible to reverse resistance? Nat. Rev. Microbiol., 2010, 8(4), 260-271.
[http://dx.doi.org/10.1038/nrmicro2319] [PMID: 20208551]
[2]
Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov., 2013, 12(5), 371-387.
[http://dx.doi.org/10.1038/nrd3975] [PMID: 23629505]
[3]
Kealey, C.; Creaven, C.A.; Murphy, C.D.; Brady, C.B. New approaches to antibiotic discovery. Biotechnol. Lett., 2017, 39(6), 805-817.
[http://dx.doi.org/10.1007/s10529-017-2311-8] [PMID: 28275884]
[4]
Epand, R.M.; Walker, C.; Epand, R.F.; Magarvey, N.A. Molecular mechanisms of membrane targeting antibiotics. Biochim. Biophys. Acta, 2016, 1858(5), 980-987.
[http://dx.doi.org/10.1016/j.bbamem.2015.10.018] [PMID: 26514603]
[5]
Wada, A.; Kono, M.; Kawauchi, S.; Takagi, Y.; Morikawa, T.; Funakoshi, K. Rapid discrimination of Gram-positive and Gram-negative bacteria in liquid samples by using NaOH-sodium dodecyl sulfate solution and flow cytometry. PLoS One, 2012, 7(10)e47093
[http://dx.doi.org/10.1371/journal.pone.0047093] [PMID: 23077549]
[6]
Hrast, M.; Sosič, I.; Šink, R.; Gobec, S. Inhibitors of the peptidoglycan biosynthesis enzymes MurA-F. Bioorg. Chem., 2014, 55, 2-15.
[http://dx.doi.org/10.1016/j.bioorg.2014.03.008] [PMID: 24755374]
[7]
Silver, L.L. Fosfomycin: Mechanism and Resistance. Cold Spring Harb. Perspect. Med., 2017, 7(2), 1-12.
[http://dx.doi.org/10.1101/cshperspect.a025262] [PMID: 28062557]
[8]
Yao, L.H.; Jiang, Y.M.; Shi, J.; Tomás-Barberán, F.A.; Datta, N.; Singanusong, R.; Chen, S.S. Flavonoids in food and their health benefits. Plant Foods Hum. Nutr., 2004, 59(3), 113-122.
[http://dx.doi.org/10.1007/s11130-004-0049-7] [PMID: 15678717]
[9]
Kumar, A.; Saranathan, R.; Prashanth, K.; Tiwary, B.K.; Krishna, R. Inhibition of the MurA enzyme in Fusobacterium nucleatum by potential inhibitors identified through computational and in vitro approaches. Mol. Biosyst., 2017, 13(5), 939-954.
[http://dx.doi.org/10.1039/C7MB00074J] [PMID: 28358152]
[10]
Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. ScientificWorldJournal, 2013.2013162750
[http://dx.doi.org/10.1155/2013/162750] [PMID: 24470791]
[11]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview J. Nutr. Sci., 2016, 5e47
[http://dx.doi.org/10.1017/jns.2016.41 PMID: 28620474]
[12]
Musdja, Y.M.; Hapsari, M.A.; Agusta, A. Comparison of activity and inhibitory mechanism between (+)-catechin and water extract of gambier (Uncaria gambir roxb.) against some bacteria. Sci. J. PPI-UKM., 2017, 4(2), 55-60.
[http://dx.doi.org/10.27512/sjppi-ukm/se/a29012018]
[13]
Martini, N.D.; Katerere, D.R.P.; Eloff, J.N. Biological activity of five antibacterial flavonoids from Combretum erythrophyllum (Combretaceae). J. Ethnopharmacol., 2004, 93(2-3), 207-212.
[http://dx.doi.org/10.1016/j.jep.2004.02.030] [PMID: 15234754]
[14]
Jarial, R.; Shard, A.; Thakur, S.; Sakinah, M.; Zularisam, A.W.; Rezania, S.; Kanwar, S.S.; Singh, L. Characterization of flavonoids from fern Cheilanthes tenuifolia and evaluation of antioxidant, antimicrobial and anticancer activities. J. King Saud Univ. Sci., 2018, 30(4), 425-432.
[http://dx.doi.org/10.1016/j.jksus.2017.04.007]
[15]
Zeng, Y.; Nikitkova, A.; Abdelsalam, H.; Li, J.; Xiao, J. Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Arch. Oral Biol., 2019, 98, 9-16.
[http://dx.doi.org/10.1016/j.archoralbio.2018.11.005] [PMID: 30419487]
[16]
Sato, M.; Tanaka, H.; Fujiwara, S.; Hirata, M.; Yamaguchi, R.; Etoh, H.; Tokuda, C. Antibacterial property of isoflavonoids isolated from Erythrina variegata against cariogenic oral bacteria. Phytomedicine, 2003, 10(5), 427-433.
[http://dx.doi.org/10.1078/0944-7113-00225] [PMID: 12834009]
[17]
Xie, Y.; Yang, W.; Tang, F.; Chen, X.; Ren, L. Antibacterial activities of flavonoids: Structure-activity relationship and mechanism. Curr. Med. Chem., 2015, 22(1), 132-149.
[http://dx.doi.org/10.2174/0929867321666140916113443] [PMID: 25245513]
[18]
Camere-Colarossi, R.; Ulloa-Urizar, G.; Medina-Flores, D.; Caballero-García, S.; Mayta-Tovalino, F.; del Valle-Mendoza, J. Antibacterial activity of Myrciaria dubia (camu camu) against Streptococcus mutans and Streptococcus sanguinis. Asian Pac. J. Trop. Biomed., 2016, 6(9), 740-744.
[http://dx.doi.org/10.1016/j.apjtb.2016.07.008]
[19]
Apea-Bah, F.B.; Hanafi, M.; Dewi, R.T.; Fajriah, S.; Darwaman, A.; Artanti, N.; Lotulung, P.; Ngadymang, P.; Minarti, B. Assessment of the DPPH and glucosidase inhibitory potential of gambier and qualitative identification of major bioactive compound. J. Med. Plants Res., 2009, 3(10), 736-757.
[20]
Mujeeb, M.; Ashraf, K.; Aqil, M.; Amir, M.; Khan, A.; Sharma, D. Phytochemical analysis and in vitro antioxidant activity of Uncaria gambir. Int. J. Green Pharm., 2012, 6(1), 67.
[http://dx.doi.org/10.4103/0973-8258.97136]
[21]
Rauf, R.; Santoso, U. Suparmo. DPPH radical scaveging ativity of gambir extracts (Uncaria gambir Roxb.). Agritech, 2010, 30(1), 1-5.
[http://dx.doi.org/10.22146/agritech.9684]
[22]
Zhang, Q.; Zhao, J.J.; Xu, J.; Feng, F.; Qu, W. Medicinal uses, phytochemistry and pharmacology of the genus Uncaria. J. Ethnopharmacol., 2015, 173, 48-80.
[http://dx.doi.org/10.1016/j.jep.2015.06.011] [PMID: 26091967]
[23]
Taniguchi, S.; Kuroda, K.; Yoshikado, N.; Doi, K. ichi; Tanabe, M.; Shibata, T.; Yoshida, T.; Hatano, T. New dimeric flavans from gambir, an extract of Uncaria gambir. Heterocycles, 2007, 74(C), 595-605.
[http://dx.doi.org/10.1002/chin.200823201]
[24]
Taniguchi, S.; Doi, K.; Kuroda, K.; Tanabe, M.; Yoshikado, N.; Shibata, T.; Yoshida, T.; Hatano, T. Organic chemistry fields new dimeric flavans from gambir, an extract of Uncaria gambir. Heterocycles, 2008, 74(1), 1-11.
[http://dx.doi.org/10.3987/COM-07-S(W)37]]
[25]
Kapitan, O. B.; Ambarsari, L.; Falah, S. Inhibition Docking Simulation of Zerumbone, Gingerglycolipid B, and Curzerenone. Compound of Zingiber zerumbet from Timor Island against MurA enzyme J. Appl. Chem. Sci., 2016 No. February;, 279-288.
[26]
Cockerill, F.R.; Wiker, M.A.; Alder, J.; Dudley, M.N.; Eliopoulos, G.M.; Ferraro, M.J.; Hardy, D.J.; Hecht, D.W.; Hindler, J.A.; Patel, J.B.; Powell, M.; Swenson, J.M.; Thomson, R.B.; Traczewski, M.M.; Turnidge, J.D.; Weinstein, M.P.B.L.Z. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard-Ninth Edition; , 2012, 32, . Buku panduan, tidak ada
[27]
Skarzynski, T.; Mistry, A.; Wonacott, A.; Hutchinson, S.E.; Kelly, V.A.; Duncan, K. Structure of UDP-N-acetylglucosamine enol pyruvyl transferase, an enzyme essential for the synthesis of bacterial peptidoglycan, complexed with substrate UDP-N-acetylglucosamine and the drug fosfomycin. Structure, 1996, 4(12), 1465-1474.https://doi.org/10.1016/
[28]
Hye, M.A.; Taher, M.A.; Ali, M.Y.; Ali, M.U.; Zaman, S. Isolation of (+)-catechin from Acacia catechu (cutch tree) by a convenient method. J. Sci. Res., 2009, 1(2), 300-305.
[http://dx.doi.org/10.3329/jsr.v1i2.1635]
[29]
Tsimogiannis, D.; Samiotaki, M.; Panayotou, G.; Oreopoulou, V. Characterization of flavonoid subgroups and hydroxy substitution by HPLC-MS/MS Molecule, 2007, 12, 593-606.https://doi.org/10.3390/
[30]
Wang, C.M.; Hsu, Y.M.; Jhan, Y.L.; Tsai, S.J.; Lin, S.X.; Su, C.H.; Chou, C.H. Structure elucidation of procyanidins isolated from Rhododendron formosanum and their anti-oxidative and anti-bacterial activities. Molecules, 2015, 20(7), 12787-12803.
[http://dx.doi.org/10.3390/molecules200712787] [PMID: 26184152]
[31]
Davis, A.L.; Cai, Y.; Davies, A.P.; Lewis, J.R. 1H and 13C-NMR assignments of some green tea polyphenols. Magn. Reson. Chem., 1996, 34(February), 887-890.
[http://dx.doi.org/10.1002/(SICI)1097-458X(199611)34:11<887:AID-OMR995>3.0.CO;2-U]
[32]
Kuete, V. Potential of Cameroonian plants and derived products against microbial infections: A review. Planta Med., 2010, 76(14), 1479-1491.
[http://dx.doi.org/10.1055/s-0030-1250027] [PMID: 20533165]
[33]
Alhaji Isa, M.; Majumdar, R.S.; Haider, S.; Kandasamy, S. Molecular modeling and dynamic simulation of UDP-N-acetylglucosamine 1-carboxy vinyl transferase (MurA) from Mycobacterium tuberculosis using in silico approach. Informatics Med. Unlocked, 2018, 12(June), 56-66.
[http://dx.doi.org/10.1016/j.imu.2018.06.007]
[34]
Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tsukuguni, T.; Tomiyama, D.; Kurahachi, M.; Nonaka, Ai.; Miyamoto, T. A study of the antibacterial mechanism of catechins: Isolation and identification of Eschericia coli cell surface proteins that interact with epigallocatechin gallate. Food Control, 2003, 33(2), 433-439.
[http://dx.doi.org/10.1016/j.foodcont.2013.03.016]
[35]
Nakayama, M.; Shimatani, K.; Ozawa, T.; Shigemune, N.; Tomiyama, D.; Yui, K.; Katsuki, M.; Ikeda, K.; Nonaka, A.; Miyamoto, T. Mechanism for the antibacterial action of epigallocatechin gallate (EGCg) on Bacillus subtilis. Biosci. Biotechnol. Biochem., 2015, 79(5), 845-854.
[http://dx.doi.org/10.1080/09168451.2014.993356] [PMID: 25559894]
[36]
Taylor, P.W.; Hamilton-Miller, J.M.T.; Stapleton, P.D. Antibacterial properties of green tea catechins. Food Sci. Technol. Bull., 2005, 2, 71-81.
[37]
Kajiya, K.; Hojo, H.; Suzuki, M.; Nanjo, F.; Kumazawa, S.; Nakayama, T. Relationship between antibacterial activity of (+)-catechin derivatives and their interaction with a model membrane. J. Agric. Food Chem., 2004, 52(6), 1514-1519.
[http://dx.doi.org/10.1021/jf0350111] [PMID: 15030204]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy