Skip to main content
Log in

Research on the Fluid Flow Characteristics in the Process of Pump Closing in Cementing

  • Published:
Chemistry and Technology of Fuels and Oils Aims and scope

An instantaneous change of displacement during the cementing pump closing in the process of cementing in formations with a narrow density window may cause flow and pressure fluctuations and affect the wellbore safety and annulus pressure stability. Therefore, it is important to study the wellbore fluid flow characteristics in the process of cementing pump closing. In this paper, the authors have established control equations for the wellbore fluid flow in the process of instantaneous cementing pump closing and have determined the solution method and boundary conditions for the derived equations. The corresponding calculation software has been developed, and the fluid flow characteristics in the process of the cementing pump closing have been analyzed based on the practical calculation. This research may have important practical significance for optimizing the closing operation parameters in the process of cementing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

References

  1. T. A. Hussain and A. A. Muhammad, “Water hammer analysis for Khobar—Dammam water transmission ring line,” Arab. J. Sci. Eng., 40(8), 2183-2199 (2015), https://doi.org/10.1007/s13369-015-1715-9.

    Article  Google Scholar 

  2. W. Sobieski, D. Grygo, and S. Lipinski, “Measurement and analysis of the water hammer in rain pump,” Ind. Acad. Sci., 41(11), 1333-1347 (2016), https://doi.org/10.1007/s12046-016-0560-1.

    Article  Google Scholar 

  3. E. B. Wylie, V. L. Streeter, and L. Suo, Fluid Transients in Systems, Prentice Hall, Englewood Cliffs (1993).

    Google Scholar 

  4. A. Triki, “Further investigation on the resonance of free-surface waves provoked by floodgate maneuvers: negative surge waves,” Ocean Eng., 133, 133-141 (2017). https://doi.org/10.1016/j.oceaneng.2017.02.003

    Article  Google Scholar 

  5. A. Triki, “Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section,” Acta Mech., 227(3), 777-793 (2016). https://doi.org/10.1007/s00707-015-1493-1

    Article  Google Scholar 

  6. A. Rezghi and A. Ria.si, “Sensitivity analysis of transient flow of two parallel pump-turbines operating at runaway,” Renew. Energy 86, 611-622 (2016). https://doi.org/10.1016/j.renene.2015.08.059

    Article  Google Scholar 

  7. X. Li, M. Zhu and J. Xie, “Numerical simulation of transient pressure control in a pumped water supply system using an improved bypass pipe,” Strojniski Vestn. J. Mech. Eng., 62(10), 614-622 (2016). https://doi.org/10.5545/sv-jme.2016.3535

    Article  Google Scholar 

  8. M. Rohani and M. H. Afshar, “Simulation of transient flow caused by pump failure: point-implicit method of characteristics,” Ann. Nucl. Energ., 37(12), 1742-1750 (2010). https://doi.org/10.1016/j.anucene.2010.07.004

    Article  CAS  Google Scholar 

  9. X. D. Yu, J. Zhang, and D. Miao, “Innovative closure law for pump-turbines and field test verification,” J. Hydraul. Eng., 141(3), 124-138 (2015). https://doi.org/10.1061/(asce)hy.1943-7900.0000976

    Article  Google Scholar 

  10. A. Riasi and P. Tazraei, “Numerical analysis of the hydraulic transient response in the presence of surge tanks and relief valves,” Renew. Energ., 107, 138-146 (2017). https://doi.org/10.1016/j.renene.2017.01.046

    Article  Google Scholar 

  11. M. S. Ghidaoui, M. Zhao, D. A. McInnis, and D. H. Axworthy, “A review of water hammer theory and practice,” Appl. Mech. Rev., 58(1), 49-76 (2005).

    Article  Google Scholar 

  12. M. H. Chaudhry and M. Y. Hussaini, “Second-order accurate explicit finite-difference schemes for water hammer analysis,” J. Fluids Eng., 107, 523-529 (1985).

    Article  Google Scholar 

  13. M. Zhao and M. S. Ghidaoui, “Godunov-type solutions for water hammer flows,” J. Hydraul. Eng., 130(4), 341-348 (2004).

    Article  Google Scholar 

  14. V. Guinot, “Riemann solvers for water hammer simulations by Godunov method,” Int. J. Numer Methods Eng. 49(7), 851-870 (2000). https://doi.org/10.1002/1097-0207(20001110)49:7<851

    Article  Google Scholar 

  15. D. J. Wood, “Water hammer analysis—essential and easy (and efficient),” J. Environ. Eng., 131(8), 1123-1131 (2005). https://doi.org/10.1061/(asce)0733-9372(2005)131:8(1123)

    Article  CAS  Google Scholar 

  16. A. Lohrasbi and R. Attarnejad, “Water hammer analysis by characteristic method,” Am. J. Eng. Appl. Sci., 1(4), 287-294 (2008).

    Article  Google Scholar 

  17. K. H. Asli, A. K. Haghi, H. H. Asli, and E. S. Eshghi, “Water hammer modeling and simulation by GIS,” Model. Simul. Eng., 2012 (2012). https://doi.org/10.1155/2012/704163

  18. M. H. Afshar and M. Rohani, “Water hammer simulation by implicit method of characteristic,” Int. J. Pres. Ves. Pip., 85(12), 851-859 (2008).

    Article  Google Scholar 

  19. D. C. Wiggert, F. J. Hatfield, and S. Struckenbruck, “Analysis of liquid and structural transients in piping by method of characteristics,” J. Fluid. Eng., 109, 161-165(1987).

    Article  CAS  Google Scholar 

  20. Y. C. Huang, C. C. Lin, and H. D. Yeh, “An optimization approach to leak detection in pipe networks using simulated annealing,” Water Resour Manage., 29(11), 4185-4201 (2015). https://doi.org/10.1007/s11269-015-1053-4

    Article  Google Scholar 

  21. A. Triki, “Water-hammer control in pressurized-pipe flow using an in-line polymeric short-section,” Acta Mech., 227, 777-793 (2015). https://doi.org/10.1007/s00707-015-1493-1

    Article  Google Scholar 

  22. M. R. Bazargan-Lari, R. Kerachian, H. Afshar, and S. N. Bashi-Azghadi, “Developing an optimal valve closing rule curve for real-time pressure control in pipes,” J. Mech. Sci. Technol., 27(1), 215-225 (2013). https://doi.org/10.1007/s12206-012-1208-7

    Article  Google Scholar 

  23. U. Karadzic, V. Bulatovic, and A. Bergant, “Valve-induced water hammer and column separation in a pipeline apparatus,” Strojniski Vestn. J. Mech. Eng., 60(11), 742-754 (2014). https://doi.org/10.5545/sv-jme.2014.1882

    Article  Google Scholar 

  24. S. Holler and H. Jaberg, “A contribution to water hammer analysis in pumped-storage power plants,” Wasserwirtschaft, 103(1-2), 78-84 (2013).

    Article  Google Scholar 

  25. W. Wan and F. Li, “Sensitivity analysis of operational time differences for a pump-valve system on a water hammer response,” J. Pres. Ices. Technol., 138(1), 303-311 (2016). https://doi.org/10.1115/1.4031202

    Article  Google Scholar 

  26. J. G. Vasconcelos, P. R. Klaver, and D. J. Lautenbach, “Flow regime transition simulation incorporating entrapped air pocket effects,” Urban Water J., 12(6), 488-501 (2015). https://doi.org/10.1080/1573062x.2014.881892

    Article  Google Scholar 

  27. W. Assaad, D. D. Crescenzo, D. Murphy, and J. Boyd, “Computation of surge pressure wave propagation during cementation process,” SPE Dril. Compl., 35(01), 114-124 (2020). SPE/IADC-194151-MS

  28. C. Wang and J. D. Yang, “Water hammer simulation using explicit-implicit coupling methods,” J. Hydraul. Eng., 141 (4), 344-358 (2015). https://doi.org/10.1061/(ASCE)HY.1943-7900.0000979.

    Article  Google Scholar 

  29. R. MacCormack, “The effect of viscosity in hypervelocity impact cratering,” J. Spacecr. Rockets, 40(5), 757-763 (2003).

    Article  Google Scholar 

  30. D. Gottlieb and E. Turkel, “Dissipative two–four methods for time-dependent problems,” Math. Comput., 30(136), 703-723 (1976). https://doi.org/10.2307/2005392

    Article  Google Scholar 

  31. J. D. Anderson, Computational Fluid Dynamics: The Basics with Applications, McGraw-Hill Inc, New York (1995).

    Google Scholar 

  32. A. Triki, “Resonance of free-surface waves provoked by floodgate maneuvers,” J. Hydrol. Eng. 19(6), 1124-1130 (2014). https://doi.org/10.1061/(asce)he.1943-5584.0000895

    Article  Google Scholar 

  33. A. Triki, “Dual-technique-based inline design strategy for water-hammer control in pressurized pipe flow,”Acta Mech., 229(3), 2019-2039 (2017). https://doi.org/10.1007/s00707-017-2085-z

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Natural Science Foundation of China (Project No. 51804043) and the Yangtze Fund for Youth Teams in Science and Technology Innovation (2016cqt03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangjin Zheng.

Additional information

Author Contributions

S. Z. is in charge of the work listed as: theoretical modeling, studying the solution method. T.L. and D.D. are in charge of developing software. Y.L. is in charge of using software to calculate and analyze data. Y.P. is in charge of revising and polishing the paper.

Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 5, pp. 62 – 66, September – October, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, S., Liu, T., Du, D. et al. Research on the Fluid Flow Characteristics in the Process of Pump Closing in Cementing. Chem Technol Fuels Oils 56, 792–806 (2020). https://doi.org/10.1007/s10553-020-01192-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10553-020-01192-w

Keywords

Navigation